HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Anti-metastatic effects of isolinderalactone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells.

Abstract
Metastatic lung cancer is a leading cause of mortality and has a mortality rate of ≥90%. Isolinderalactone (ILL) is a sesquiterpene lactone compound that has been used in traditional Chinese medicine. Research has demonstrated that ILL has anti-inflammatory and anti-proliferative properties; however, to the best of our knowledge, studies investigating whether ILL can inhibit lung cancer cell metastasis have not been conducted. In the present study, 1-10 µM ILL was applied in the culturing of the A549 lung cancer cell line to investigate the effects of ILL on the invasion and migration of lung cancer cells, including whether the possible mechanisms of ILL are associated with the expression of matrix metalloproteinase (MMP)-2 and NME/NM23 nucleoside diphosphate kinase 1 (NM23-H1) genes. The results of the present study indicated that ILL inhibited the invasion and migration of the A549 cancer cells and exhibited a dose-response association. ILL also significantly inhibited the protein expression and activity of MMP-2 (P<0.05), exhibiting a trend similar to that of its invasion- and migration-associated properties. Further research revealed that ILL significantly increased the expression of NM23-H1 protein and inhibited the expression of β-catenin protein (P<0.05). The results of the present study is, to the best of our knowledge, the first to confirm that ILL can inhibit the invasion and migration of A549 cancer cells, with the possible mechanisms potentially involving the inhibition of MMP-2 and β-catenin protein expression resulting from the up regulation of NM23-H1 expression.
AuthorsCheng-Hung Chuang, Li-Yu Wang, Yuen Man Wong, En-Shyh Lin
JournalOncology letters (Oncol Lett) Vol. 15 Issue 4 Pg. 4690-4696 (Apr 2018) ISSN: 1792-1074 [Print] Greece
PMID29541242 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: