HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chronic fructose intake does not induce liver steatosis and inflammation in female Sprague-Dawley rats, but causes hypertriglyceridemia related to decreased VLDL receptor expression.

AbstractPURPOSE:
Sugar-sweetened beverage intake is a risk factor for insulin resistance, dyslipidemia, fatty liver, and steatohepatitis (NASH). Sub-chronic supplementation of liquid fructose, but not glucose, in female rats increases liver and plasma triglycerides without inflammation. We hypothesized that chronic supplementation of fructose would cause NASH and liver insulin resistance.
METHODS:
We supplemented female Sprague-Dawley rats with water or either fructose or glucose 10% w/v solutions under isocaloric conditions for 7 months. At the end, plasma analytes, insulin, and adiponectin were determined, as well as liver triglyceride content and the expression of key genes controlling inflammation, fatty acid synthesis and oxidation, endoplasmic reticulum stress, and plasma VLDL clearance, by biochemical and histological methods.
RESULTS:
Although sugar-supplemented rats increased their energy intake by 50-60%, we found no manifestation of liver steatosis, fibrosis or necrosis, unchanged plasma or tissue markers of inflammation or fibrosis, and reduced liver expression of gluconeogenic enzymes, despite both sugars increased fatty acid synthesis, mTORC1, and IRE1 activity, while decreasing fatty acid oxidation and PPARĪ± activity. Only fructose-supplemented rats were hypertriglyceridemic, showing a reduced expression of VLDL receptor and lipoprotein lipase in skeletal muscle and vWAT. Glucose-supplemented rats showed increased adiponectinemia, which would explain the different metabolic outcomes of the two sugars.
CONCLUSIONS:
Chronic liquid simple sugar supplementation, as the sole risk factor, is not enough for female rats to develop NASH and increased liver gluconeogenesis. Nevertheless, under isocaloric conditions, only fructose induced hypertriglyceridemia, thus confirming that also the type of nutrient matters in the development of metabolic diseases.
AuthorsGemma Sangüesa, José Carlos Montañés, Miguel Baena, Rosa María Sánchez, Núria Roglans, Marta Alegret, Juan Carlos Laguna
JournalEuropean journal of nutrition (Eur J Nutr) Vol. 58 Issue 3 Pg. 1283-1297 (Apr 2019) ISSN: 1436-6215 [Electronic] Germany
PMID29516226 (Publication Type: Journal Article)
Chemical References
  • Receptors, LDL
  • Triglycerides
  • VLDL receptor
  • Fructose
Topics
  • Animals
  • Disease Models, Animal
  • Fatty Liver
  • Female
  • Fructose (administration & dosage, adverse effects)
  • Hypertriglyceridemia (chemically induced)
  • Inflammation
  • Insulin Resistance
  • Liver (drug effects, metabolism)
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, LDL (drug effects)
  • Triglycerides (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: