HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enzyme Degradable Hyperbranched Polyphosphoester Micellar Nanomedicines for NIR Imaging-Guided Chemo-Photothermal Therapy of Drug-Resistant Cancers.

Abstract
Multidrug resistance (MDR) is the major cause for chemotherapy failure, which constitutes a formidable challenge in the field of cancer therapy. The synergistic chemo-photothermal treatment has been reported to be a potential strategy to overcome MDR. In this work, rationally designed enzyme-degradable, hyperbranched polyphosphoester nanomedicines were developed for reversing MDR via the codelivery of doxorubicin and IR-780 (hPPEDOX&IR) as combined chemo-photothermal therapy. The amphiphilic hyperbranched polyphosphoesters with phosphate bond as the branching point were synthesized via a simple but robust one-step polycondensation reaction. The self-assembled hPPEDOX&IR exhibited good serum stability, sustained release, preferable tumor accumulation, and enhanced drug influx of doxorubicin in resistant MCF-7/ADR cells. Moreover, the degradation of hPPEDOX&IR was accelerated in the presence of alkaline phosphatase, which was overexpressed in various cancers, resulting in the fast release of encapsulated doxorubicin. The enzyme-degradable polymer generated synergistic chemo-photothermal cytotoxicity against MCF-7/ADR cells and, thus, the efficient ablation of DOX-resistant tumor without regrowth. This delivery system may open a new avenue for codelivery of chemo- and photothermal therapeutics for MDR tumor therapy.
AuthorsMengqun Yao, Yinchu Ma, Hang Liu, Malik Ihsanullah Khan, Song Shen, Shuya Li, Yangyang Zhao, Yi Liu, Guoqing Zhang, Xiaoqiu Li, Fei Zhong, Wei Jiang, Yucai Wang
JournalBiomacromolecules (Biomacromolecules) Vol. 19 Issue 4 Pg. 1130-1141 (04 09 2018) ISSN: 1526-4602 [Electronic] United States
PMID29514006 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • 2-(2-(2-chloro-3-((1,3-dihydro-3,3-dimethyl-1-propyl-2H-indol-2-ylidene)ethylidene)-1-cyclohexen-1-yl)ethenyl)-3,3-dimethyl-1-propylindolium
  • Indoles
  • Doxorubicin
Topics
  • Combined Modality Therapy
  • Doxorubicin (chemistry, pharmacology)
  • Drug Delivery Systems
  • Drug Resistance, Multiple (drug effects)
  • Drug Resistance, Neoplasm (drug effects)
  • Drug Therapy (methods)
  • Humans
  • Indoles (chemistry, pharmacology)
  • MCF-7 Cells
  • Nanomedicine
  • Neoplasms (drug therapy)
  • Phototherapy

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: