HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells.

Abstract
BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an in vitro-imatinib-resistance model using K-562 cells, microRNA-212 was found to be dysregulated and inversely correlated to ABC-transporter ABCG2 expression, targeting its 3'-UTR. However, the functional impact on drug sensitivity remained unknown. Therefore, we performed transfection experiments using microRNA-mimics and -inhibitors and investigated their effect on imatinib-susceptibility in sensitive and resistant leukemic cell lines. Under imatinib-treatment, miR-212 inhibition led to enhanced cell viability (p = 0.01), reduced apoptosis (p = 0.01) and cytotoxicity (p = 0.03). These effects were limited to treatment-naïve cells and were not observed in cells, which were resistant to various imatinib-concentrations (0.1 μM to 2 μM). Further analysis in treatment-naïve cells revealed that miR-212 inhibition resulted in ABCG2 upregulation and increased ABCG2-dependent efflux. Furthermore, we observed miR-212 promoter hypermethylation in 0.5 and 2 μM IM-resistant sublines, whereas ABCG2 methylation status was not altered. Taken together, the miR-212/ABCG2-axis influences imatinib-susceptibility contributing to development of imatinib-resistance. Our data reveal new insights into mechanisms initiating imatinib-resistance in leukemic cells.
AuthorsMeike Kaehler, Johanna Ruemenapp, Daniel Gonnermann, Inga Nagel, Oliver Bruhn, Sierk Haenisch, Ole Ammerpohl, Daniela Wesch, Ingolf Cascorbi, Henrike Bruckmueller
JournalOncotarget (Oncotarget) Vol. 8 Issue 54 Pg. 92018-92031 (Nov 03 2017) ISSN: 1949-2553 [Electronic] United States
PMID29190894 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: