HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Established Models and New Paradigms for Hypoxia-Driven Cancer-Associated Bone Disease.

Abstract
The five-year survival rate for primary bone cancers is ~ 70% while almost all cases of secondary metastatic bone cancer are terminal. Hypoxia, the deficiency of oxygen which occurs as the rate of tumour growth exceeds the supply of vascularisation, is a key promoter of tumour progression. Hypoxia-driven effects in the primary tumour are wide ranging including changes in gene expression, dysregulation of signalling pathways, resistance to chemotherapy, neovascularisation, increased tumour cell proliferation and migration. Paget's seed and soil theory states that for a metastasising tumour cell 'the seed' it requires the correct microenvironment 'soil' to colonise. Why and how metastasising tumour cells colonise the bone is a complex and intriguing problem. However, once present tumour cells are able to disrupt bone homeostasis through increasing osteoclast activity and downregulating osteoblast function. Osteoclast resorption releases growth factors from the bone matrix that subsequently contribute to the proliferation of invasive tumour cells creating the vicious cycle of bone loss and metastatic cancer progression. Recently, we have shown that hypoxia increases expression and release of lysyl oxidase (LOX) from primary mammary tumours, which in turn disrupts bone homeostasis to favour osteolytic degradation to create pre-metastatic niches in the bone microenvironment. We also demonstrated how treatment with bisphosphonates could block this cancer-induced bone remodelling and reduce secondary bone metastases. This review describes the roles of hypoxia in primary tumour progression to metastasis, with a focus on key signalling pathways and treatment options to reduce patient morbidity and increase survival.
AuthorsThomas R Cox, Janine T Erler, Robin M H Rumney
JournalCalcified tissue international (Calcif Tissue Int) Vol. 102 Issue 2 Pg. 163-173 (02 2018) ISSN: 1432-0827 [Electronic] United States
PMID29098360 (Publication Type: Journal Article, Review)
Chemical References
  • Neuropeptide Y
  • Protein-Lysine 6-Oxidase
  • Dipeptidyl Peptidase 4
Topics
  • Bone Neoplasms (epidemiology, etiology, secondary, therapy)
  • Breast Neoplasms (pathology)
  • Cell Hypoxia
  • Dipeptidyl Peptidase 4 (metabolism)
  • Disease Progression
  • Female
  • Humans
  • Models, Biological
  • Multiple Myeloma (pathology)
  • Neuropeptide Y (physiology)
  • Protein-Lysine 6-Oxidase (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: