HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mammalian γ2 AMPK regulates intrinsic heart rate.

Abstract
AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.
AuthorsArash Yavari, Mohamed Bellahcene, Annalisa Bucchi, Syevda Sirenko, Katalin Pinter, Neil Herring, Julia J Jung, Kirill V Tarasov, Emily J Sharpe, Markus Wolfien, Gabor Czibik, Violetta Steeples, Sahar Ghaffari, Chinh Nguyen, Alexander Stockenhuber, Joshua R St Clair, Christian Rimmbach, Yosuke Okamoto, Dongmei Yang, Mingyi Wang, Bruce D Ziman, Jack M Moen, Daniel R Riordon, Christopher Ramirez, Manuel Paina, Joonho Lee, Jing Zhang, Ismayil Ahmet, Michael G Matt, Yelena S Tarasova, Dilair Baban, Natasha Sahgal, Helen Lockstone, Rathi Puliyadi, Joseph de Bono, Owen M Siggs, John Gomes, Hannah Muskett, Mahon L Maguire, Youlia Beglov, Matthew Kelly, Pedro P N Dos Santos, Nicola J Bright, Angela Woods, Katja Gehmlich, Henrik Isackson, Gillian Douglas, David J P Ferguson, Jürgen E Schneider, Andrew Tinker, Olaf Wolkenhauer, Keith M Channon, Richard J Cornall, Eduardo B Sternick, David J Paterson, Charles S Redwood, David Carling, Catherine Proenza, Robert David, Mirko Baruscotti, Dario DiFrancesco, Edward G Lakatta, Hugh Watkins, Houman Ashrafian
JournalNature communications (Nat Commun) Vol. 8 Issue 1 Pg. 1258 (11 02 2017) ISSN: 2041-1723 [Electronic] England
PMID29097735 (Publication Type: Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Ryanodine Receptor Calcium Release Channel
  • PRKAG2 protein, human
  • AMP-Activated Protein Kinases
  • Calcium
Topics
  • AMP-Activated Protein Kinases (genetics)
  • Adult
  • Animals
  • Bradycardia (genetics, metabolism)
  • Calcium (metabolism)
  • Electrocardiography, Ambulatory
  • Exercise
  • Heart (diagnostic imaging)
  • Heart Rate (genetics)
  • Humans
  • Magnetic Resonance Imaging, Cine
  • Magnetic Resonance Spectroscopy
  • Mice
  • Microscopy, Electron, Transmission
  • Mutation
  • Myocardium (metabolism, pathology, ultrastructure)
  • Physical Conditioning, Animal
  • Physical Endurance
  • Ryanodine Receptor Calcium Release Channel (metabolism)
  • Sarcolemma (metabolism)
  • Sinoatrial Node (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: