HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression.

AbstractBACKGROUND:
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. BACH1, a basic leucine zipper transcription factor, has been shown to transcriptionally regulate expression of a range of genes that are associated with breast cancer metastasis. However, the exact role and the underlying molecular mechanism of BACH1 in prostate cancer remain unclear. This study aims to explore the expression of BACH1 in prostate cancer tissues and the effect of BACH1 suppression on prostate cancer cell behavior.
MATERIALS AND METHODS:
In this study, we used quantitative real-time PCR (qRT-PCR) to measure BACH1 expression in prostate adenocarcinoma tissues and two metastasis-derived prostate cancer cell lines, DU145 and LNCaP. We also used immunohistochemical (IHC) staining to measure BACH1 protein expression in prostate adenocarcinoma and matched normal tissue samples. In the following BACH1 expression was silenced in DU145 cells using siRNA as well. Knockdown was confirmed by qRT-PCR and Western blotting. The cytotoxic effects of BACH1-siRNA on DU145 cells were determined using an MTT assay. The migration and invasive capacity of DU145 cells were examined by scratch wound healing assay and matrigel invasion assay, respectively. We also used qRT-PCR to study the effect of BACH1 silencing on the expression levels of metastasis-related genes.
RESULTS:
We find that the expression of BACH1 mRNA and protein in prostate cancer tissues is significantly higher than in matched normal prostate tissues (p < .05). In addition, DU145 and LNCaP cells exhibited 4.25-fold and 3.45-fold higher levels of BACH1 compared to HFF cell line. BACH1-siRNA significantly reduced both mRNA and protein expression levels in DU145 cells. More importantly, we show that BACH1 promotes key features of metastasis, as BACH1-siRNA treatment significantly reduced cell invasion and migration by changing the expression levels of a number of metastasis-related genes in vitro.
CONCLUSIONS:
BACH1 is overexpressed in prostate cancer. Because this promotes invasion and migration, it may facilitate metastasis of prostate cancer. Thus, BACH1 is a potential therapeutic target for metastatic prostate cancer. BACH1 silencing therapy can be considered as a novel and effective adjuvant in prostate cancer targeted therapies.
AuthorsNeda Shajari, Sadaf Davudian, Tohid Kazemi, Behzad Mansoori, Shima Salehi, Vahid Khaze Shahgoli, Dariush Shanehbandi, Ali Mohammadi, Pascal H G Duijf, Behzad Baradaran
JournalArtificial cells, nanomedicine, and biotechnology (Artif Cells Nanomed Biotechnol) Vol. 46 Issue 7 Pg. 1495-1504 (11 2018) ISSN: 2169-141X [Electronic] England
PMID28889753 (Publication Type: Journal Article)
Chemical References
  • BACH1 protein, human
  • Basic-Leucine Zipper Transcription Factors
  • RNA, Messenger
  • RNA, Small Interfering
Topics
  • Basic-Leucine Zipper Transcription Factors (deficiency, genetics, metabolism)
  • Cell Movement (genetics)
  • Gene Expression Regulation, Neoplastic (genetics)
  • Gene Silencing
  • Humans
  • Male
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Prostatic Neoplasms (pathology)
  • RNA, Messenger (genetics, metabolism)
  • RNA, Small Interfering (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: