HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Repositioning drugs for traumatic brain injury - N-acetyl cysteine and Phenserine.

Abstract
Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults of less than 45 years of age and the elderly, and contributes to about 30% of all injury deaths in the United States of America. Whereas there has been a significant improvement in our understanding of the mechanism that underpin the primary and secondary stages of damage associated with a TBI incident, to date however, this knowledge has not translated into the development of effective new pharmacological TBI treatment strategies. Prior experimental and clinical studies of drugs working via a single mechanism only may have failed to address the full range of pathologies that lead to the neuronal loss and cognitive impairment evident in TBI and other disorders. The present review focuses on two drugs with the potential to benefit multiple pathways considered important in TBI. Notably, both agents have already been developed into human studies for other conditions, and thus have the potential to be rapidly repositioned as TBI therapies. The first is N-acetyl cysteine (NAC) that is currently used in over the counter medications for its anti-inflammatory properties. The second is (-)-phenserine ((-)-Phen) that was originally developed as an experimental Alzheimer's disease (AD) drug. We briefly review background information about TBI and subsequently review literature suggesting that NAC and (-)-Phen may be useful therapeutic approaches for TBI, for which there are no currently approved drugs.
AuthorsBarry J Hoffer, Chaim G Pick, Michael E Hoffer, Robert E Becker, Yung-Hsiao Chiang, Nigel H Greig
JournalJournal of biomedical science (J Biomed Sci) Vol. 24 Issue 1 Pg. 71 (Sep 09 2017) ISSN: 1423-0127 [Electronic] England
PMID28886718 (Publication Type: Journal Article, Review)
Chemical References
  • Anti-Inflammatory Agents
  • Cholinesterase Inhibitors
  • Psychotropic Drugs
  • Physostigmine
  • phenserine
  • Acetylcysteine
Topics
  • Acetylcysteine (therapeutic use)
  • Animals
  • Anti-Inflammatory Agents (therapeutic use)
  • Brain Injuries, Traumatic (drug therapy)
  • Cholinesterase Inhibitors (therapeutic use)
  • Drug Repositioning
  • Humans
  • Mice
  • Physostigmine (analogs & derivatives, therapeutic use)
  • Psychotropic Drugs (therapeutic use)
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: