HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Development of GLUT4-selective antagonists for multiple myeloma therapy.

Abstract
Cancer cells consume more glucose to fuel metabolic programs fundamental to sustaining their survival, growth and proliferation. Among the fourteen SLC2A family members, GLUTs 1 and 4 are high-affinity glucose transporters. GLUT4 (SLC2A4) is highly expressed in muscle and adipose tissue. Basally retained within the cell, GLUT4 traffics to the plasma membrane (PM) in response to insulin and exercise-stimulation. The plasma cell malignancy multiple myeloma (MM) exhibits increased constitutive expression of GLUT4 on the PM, co-opting use of GLUT4 for survival and proliferation. GLUT4 inhibition by knockdown or treatment with the FDA-approved HIV protease inhibitor ritonavir leads to cytostatic and/or cytotoxic and chemosensitizing effects in tumor cells both in vitro and in vivo. We recently reported our generation of GLUT4 homology models and virtual high-throughput screening (vHTS) to identify multiple series of novel GLUT4 antagonists. In this report, we describe our initial hit-to-lead optimization to synthesize new analogs with improved potency and selectivity for GLUT4, and the biological characterization of these compounds in a variety of assays. We show that our lead compound (compound 20) decreases glucose uptake and cell proliferation as well as inhibits the expression of pro-survival MCL-1 in MM similar to the effect observed via knockdown of GLUT4 expression. Compound 20 is also effective at chemosensitizing multiple myeloma cell lines and patient samples to venetoclax, dexamethasone and melphalan. In sum, we report development of selective GLUT4 inhibitors lacking inhibitory activity against GLUT1 and GLUT8. We show that selective pharmacological inhibition of GLUT4 is feasible and this may represent a novel strategy for the treatment and chemosensitization of multiple myeloma to standard therapeutics.
AuthorsChangyong Wei, Richa Bajpai, Horrick Sharma, Monique Heitmeier, Atul D Jain, Shannon M Matulis, Ajay K Nooka, Rama K Mishra, Paul W Hruz, Gary E Schiltz, Mala Shanmugam
JournalEuropean journal of medicinal chemistry (Eur J Med Chem) Vol. 139 Pg. 573-586 (Oct 20 2017) ISSN: 1768-3254 [Electronic] France
PMID28837922 (Publication Type: Journal Article)
CopyrightCopyright © 2017 Elsevier Masson SAS. All rights reserved.
Chemical References
  • Antineoplastic Agents
  • Glucose Transporter Type 4
  • SLC2A4 protein, human
Topics
  • Animals
  • Antineoplastic Agents (chemical synthesis, chemistry, pharmacology)
  • Cell Death (drug effects)
  • Cell Proliferation (drug effects)
  • Cell Survival (drug effects)
  • Dose-Response Relationship, Drug
  • Glucose Transporter Type 4 (antagonists & inhibitors, metabolism)
  • HEK293 Cells
  • Humans
  • Mice
  • Molecular Structure
  • Multiple Myeloma (drug therapy, metabolism, pathology)
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: