HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

Abstract
The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl-/[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35[Formula: see text] and 36Cl- fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm-2·h-1], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl-, and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion (USO4) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas USO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis.NEW & NOTEWORTHY Sulfate is an essential anion that is actively absorbed from the small intestine involving members of the Slc26 gene family. Here, we show that the main intestinal chloride transporter Slc26a3, known as downregulated in adenoma (DRA), also handles sulfate and contributes to its secretion into the lumen. In the absence of functional DRA (as in the disease congenital chloride diarrhea), net intestinal sulfate absorption was significantly enhanced resulting in substantial alterations to overall sulfate homeostasis.
AuthorsJonathan M Whittamore, Marguerite Hatch
JournalAmerican journal of physiology. Gastrointestinal and liver physiology (Am J Physiol Gastrointest Liver Physiol) Vol. 313 Issue 3 Pg. G166-G179 (Sep 01 2017) ISSN: 1522-1547 [Electronic] United States
PMID28526688 (Publication Type: Journal Article)
CopyrightCopyright © 2017 the American Physiological Society.
Chemical References
  • Antiporters
  • Bicarbonates
  • Chlorides
  • Slc26a3 protein, mouse
  • Slc26a6 protein, mouse
  • Sulfate Transporters
  • Sulfates
Topics
  • Animals
  • Antiporters (genetics, metabolism)
  • Bicarbonates (metabolism)
  • Biological Transport
  • Chlorides (metabolism)
  • Electric Conductivity
  • Gene Expression Regulation (physiology)
  • Homeostasis (physiology)
  • Ileum (physiology)
  • Mice
  • Mice, Knockout
  • Sulfate Transporters
  • Sulfates (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: