HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome.

AbstractBACKGROUND:
Cortical hyperexcitability due to abnormal fast-spiking inhibitory interneuron function has been documented in fmr1 KO mice, a mouse model of the fragile X syndrome which is the most common single gene cause of autism and intellectual disability.
METHODS:
We collected resting state dense-array electroencephalography data from 21 fragile X syndrome (FXS) patients and 21 age-matched healthy participants.
RESULTS:
FXS patients exhibited greater gamma frequency band power, which was correlated with social and sensory processing difficulties. Second, FXS patients showed increased spatial spreading of phase-synchronized high frequency neural activity in the gamma band. Third, we observed increased negative theta-to-gamma but decreased alpha-to-gamma band amplitude coupling, and the level of increased theta power was inversely related to the level of resting gamma power in FXS.
CONCLUSIONS:
Increased theta band power and coupling from frontal sources may represent a mechanism providing compensatory inhibition of high-frequency gamma band activity, potentially contributing to the widely varying level of neurophysiological and behavioral abnormalities and treatment response seen in full-mutation FXS patients. These findings extend preclinical observations and provide new mechanistic insights into brain alterations and their variability across FXS patients. Electrophysiological measures may provide useful translational biomarkers for advancing drug development and individualizing treatments for neurodevelopmental disorders with associated neuronal hyperexcitability.
AuthorsJun Wang, Lauren E Ethridge, Matthew W Mosconi, Stormi P White, Devin K Binder, Ernest V Pedapati, Craig A Erickson, Matthew J Byerly, John A Sweeney
JournalJournal of neurodevelopmental disorders (J Neurodev Disord) Vol. 9 Pg. 11 ( 2017) ISSN: 1866-1947 [Print] England
PMID28316753 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: