HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy.

Abstract
Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.
AuthorsNigel A Calcutt, Darrell R Smith, Katie Frizzi, Mohammad Golam Sabbir, Subir K Roy Chowdhury, Teresa Mixcoatl-Zecuatl, Ali Saleh, Nabeel Muttalib, Randy Van der Ploeg, Joseline Ochoa, Allison Gopaul, Lori Tessler, Jürgen Wess, Corinne G Jolivalt, Paul Fernyhough
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 127 Issue 2 Pg. 608-622 (Feb 01 2017) ISSN: 1558-8238 [Electronic] United States
PMID28094765 (Publication Type: Journal Article)
Chemical References
  • Muscarinic Antagonists
  • Receptor, Muscarinic M1
Topics
  • Animals
  • Diabetes Mellitus, Experimental (drug therapy, genetics, metabolism, pathology)
  • Diabetic Neuropathies (drug therapy, genetics, metabolism, pathology)
  • Hyperalgesia (drug therapy, genetics, metabolism)
  • Male
  • Mice
  • Mice, Mutant Strains
  • Mitochondria (metabolism, pathology)
  • Muscarinic Antagonists (pharmacology)
  • Neurites (metabolism, pathology)
  • Rats
  • Receptor, Muscarinic M1 (antagonists & inhibitors, genetics)
  • Sensory Receptor Cells (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: