HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Identification of Two Sulfated Cholesterol Metabolites Found in the Urine of a Patient with Niemann-Pick Disease Type C as Novel Candidate Diagnostic Markers.

Abstract
In the urine of a Niemann-Pick disease type C (NPC) patient, we have identified three characteristic intense peaks that have not been observed in the urine of a 3β-hydroxysteroid-Δ5-C27-steroid dehydrogenase deficiency patient or a healthy infant and adult. Based on accurate masses of the protonated molecules, we focused on two of them as candidate NPC diagnostic markers. Two synthesized authentic preparations agreed with the two compounds found in NPC patient urine in regard to both chromatographic behavior and accurate masses of the deprotonated molecules. Moreover, the isotopic patterns of the deprotonated molecules, twin peaks unique to the sulfur-containing compounds appearing in their second isotope positions, and accurate masses of product ions observed at m/z 97 also agreed between the target compounds and authentic preparations. We identified the two compounds as the sulfated cholesterol metabolites as 3β-sulfooxy-7β-hydroxy-5-cholen-24-oic acid and 3β-sulfooxy-7-oxo-5-cholen-24-oic acid. These two compounds represent more promising candidate diagnostic markers for NPC diagnosis than three other candidates that are multiple conjugates of cholesterol metabolites, 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine conjugates, although we have reported an analytical method for determining the urinary levels of these compounds using liquid chromatography/electrospray ionization tandem mass spectrometry, because of their lack of N-acetylglucosamine conjugation.
AuthorsMasamitsu Maekawa, Kaoru Omura, Shoutaro Sekiguchi, Takashi Iida, Daisuke Saigusa, Hiroaki Yamaguchi, Nariyasu Mano
JournalMass spectrometry (Tokyo, Japan) (Mass Spectrom (Tokyo)) Vol. 5 Issue 2 Pg. S0053 ( 2016) ISSN: 2187-137X [Print] Japan
PMID27900236 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: