HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

Abstract
Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.
AuthorsAjeet K Srivastav, Syed Faiz Mujtaba, Ashish Dwivedi, Saroj K Amar, Shruti Goyal, Ankit Verma, Hari N Kushwaha, Rajnish K Chaturvedi, Ratan Singh Ray
JournalJournal of photochemistry and photobiology. B, Biology (J Photochem Photobiol B) Vol. 156 Pg. 87-99 (Mar 2016) ISSN: 1873-2682 [Electronic] Switzerland
PMID26866294 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015. Published by Elsevier B.V.
Chemical References
  • Pyrimidine Dimers
  • Reactive Oxygen Species
  • Rose Bengal
  • Linoleic Acid
  • Caspase 3
Topics
  • Caspase 3 (metabolism)
  • Cell Line, Tumor
  • DNA Damage
  • Humans
  • Linoleic Acid (chemistry)
  • Melanoma (metabolism, pathology)
  • Membrane Potential, Mitochondrial
  • Microscopy, Electron, Transmission
  • Oxidation-Reduction
  • Pyrimidine Dimers (metabolism)
  • Reactive Oxygen Species (metabolism)
  • Rose Bengal (chemistry, toxicity)
  • Sunlight

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: