HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient (VLCAD(-/-)) mice.

AbstractBACKGROUND:
Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations.
METHODS:
In this study, we analyzed VLCAD(-/-) mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney.
RESULTS:
We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions.
CONCLUSIONS:
Our data demonstrate that despite Acadvl ablation, the kidney of VLCAD(-/-) mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function.
AuthorsSara Tucci, Antonia Krogmann, Diran Herebian, Ute Spiekerkoetter
JournalMolecular and cellular pediatrics (Mol Cell Pediatr) Vol. 1 Issue 1 Pg. 5 (Dec 2014) ISSN: 2194-7791 [Print] Germany
PMID26567099 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: