HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke.

Abstract
In the central nervous system, progranulin, a glycoprotein growth factor, plays a crucial role in maintaining physiological functions, and progranulin gene mutations cause TAR DNA-binding protein-43-positive frontotemporal lobar degeneration. Although several studies have reported that progranulin plays a protective role against ischaemic brain injury, little is known about temporal changes in the expression level, cellular localization, and glycosylation status of progranulin after acute focal cerebral ischaemia. In addition, the precise mechanisms by which progranulin exerts protective effects on ischaemic brain injury remains unknown. Furthermore, the therapeutic potential of progranulin against acute focal cerebral ischaemia, including combination treatment with tissue plasminogen activator, remains to be elucidated. In the present study, we aimed to determine temporal changes in the expression and localization of progranulin after ischaemia as well as the therapeutic effects of progranulin on ischaemic brain injury using in vitro and in vivo models. First, we demonstrated a dynamic change in progranulin expression in ischaemic Sprague-Dawley rats, including increased levels of progranulin expression in microglia within the ischaemic core, and increased levels of progranulin expression in viable neurons as well as induction of progranulin expression in endothelial cells within the ischaemic penumbra. We also demonstrated that the fully glycosylated mature secretory isoform of progranulin (∼88 kDa) decreased, whereas the glycosylated immature isoform of progranulin (58-68 kDa) markedly increased at 24 h and 72 h after reperfusion. In vitro experiments using primary cells from C57BL/6 mice revealed that the glycosylated immature isoform was secreted only from the microglia. Second, we demonstrated that progranulin could protect against acute focal cerebral ischaemia by a variety of mechanisms including attenuation of blood-brain barrier disruption, neuroinflammation suppression, and neuroprotection. We found that progranulin could regulate vascular permeability via vascular endothelial growth factor, suppress neuroinflammation after ischaemia via anti-inflammatory interleukin 10 in the microglia, and render neuroprotection in part by inhibition of cytoplasmic redistribution of TAR DNA-binding protein-43 as demonstrated in progranulin knockout mice (C57BL/6 background). Finally, we demonstrated the therapeutic potential of progranulin against acute focal cerebral ischaemia using a rat autologous thrombo-embolic model with delayed tissue plasminogen activator treatment. Intravenously administered recombinant progranulin reduced cerebral infarct and oedema, suppressed haemorrhagic transformation, and improved motor outcomes (P = 0.007, 0.038, 0.007 and 0.004, respectively). In conclusion, progranulin may be a novel therapeutic target that provides vascular protection, anti-neuroinflammation, and neuroprotection related in part to vascular endothelial growth factor, interleukin 10, and TAR DNA-binding protein-43, respectively.
AuthorsMasato Kanazawa, Kunio Kawamura, Tetsuya Takahashi, Minami Miura, Yoshinori Tanaka, Misaki Koyama, Masafumi Toriyabe, Hironaka Igarashi, Tsutomu Nakada, Masugi Nishihara, Masatoyo Nishizawa, Takayoshi Shimohata
JournalBrain : a journal of neurology (Brain) Vol. 138 Issue Pt 7 Pg. 1932-48 (Jul 2015) ISSN: 1460-2156 [Electronic] England
PMID25838514 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: [email protected].
Chemical References
  • Granulins
  • Grn protein, mouse
  • Intercellular Signaling Peptides and Proteins
  • Progranulins
Topics
  • Animals
  • Brain (drug effects, metabolism, pathology)
  • Brain Ischemia (metabolism)
  • Disease Models, Animal
  • Fluorescent Antibody Technique
  • Granulins
  • Immunoblotting
  • Immunohistochemistry
  • Intercellular Signaling Peptides and Proteins (metabolism, pharmacology)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microscopy, Confocal
  • Progranulins
  • Rats
  • Rats, Sprague-Dawley
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Stroke (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: