HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

An evolutionary scenario for gonadotrophin-inhibitory hormone in chordates.

Abstract
In 2000, we discovered a novel hypothalamic neuropeptide that actively inhibits gonadotrophin release in quail and termed it gonadotrophin-inhibitory hormone (GnIH). GnIH peptides have subsequently been identified in most representative species of gnathostomes. They all share a C-terminal LPXRFamide (X = L or Q) motif. GnIH can inhibit gonadotrophin synthesis and release by decreasing the activity of GnRH neuroes, as well as by directly inhibiting pituitary gonadotrophin secretion in birds and mammals. To investigate the evolutionary origin of GnIH and its ancestral function, we identified a GnIH precursor gene encoding GnIHs from the brain of sea lamprey, the most ancient lineage of vertebrates. Lamprey GnIHs possess a C-terminal PQRFamide motif. In vivo administration of one of lamprey GnIHs stimulated the expression of lamprey GnRH in the hypothalamus and gonadotophin β mRNA in the pituitary. Thus, GnIH may have emerged in agnathans as a stimulatory neuropeptide that subsequently diverged to an inhibitory neuropeptide during the course of evolution from basal vertebrates to later-evolved vertebrates, such as birds and mammals. From a structural point of view, pain modulatory neuropeptides, such as neuropeptide FF (NPFF) and neuropeptide AF, share a C-terminal PQRFamide motif. Because agnathans possess both GnIH and NPFF genes, the origin of GnIH and NPFF genes may date back before the emergence of agnathans. More recently, we identified a novel gene encoding RFamide peptides in the amphioxus. Molecular phylogenetic analysis and synteny analysis indicated that this gene is closely related to the genes of GnIH and NPFF of vertebrates. The results suggest that the identified protochordate gene is similar to the common ancestor of GnIH and NPFF genes, indicating that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. The GnIH and NPFF genes may have diverged by whole-genome duplication during the course of vertebrate evolution.
AuthorsT Osugi, T Ubuka, K Tsutsui
JournalJournal of neuroendocrinology (J Neuroendocrinol) Vol. 27 Issue 6 Pg. 556-66 (Jun 2015) ISSN: 1365-2826 [Electronic] United States
PMID25494813 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Copyright© 2014 British Society for Neuroendocrinology.
Chemical References
  • Gonadotropins
  • Hypothalamic Hormones
Topics
  • Amino Acid Sequence
  • Animals
  • Biological Evolution
  • Chordata
  • Gonadotropins (physiology)
  • Humans
  • Hypothalamic Hormones (chemistry, genetics, physiology)
  • Molecular Sequence Data
  • Sequence Homology, Amino Acid

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: