HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ginsenoside-Rb3 protects the myocardium from ischemia-reperfusion injury via the inhibition of apoptosis in rats.

Abstract
Ginsenoside-Rb3 (G-Rb3) has been previously demonstrated to attenuate myocardial ischemia-reperfusion injury (MIRI). The aim of the present study was to investigate this further and determine whether G-Rb3 protects the myocardium from ischemia-reperfusion injury via the inhibition of apoptosis. Adult male Sprague Dawley rats were randomly divided into four groups: Sham, MIRI, G-Rb3 treatment (orally, 20 mg/kg) and ischemic postconditioning (as the positive control). The drug or placebo treatment was administered to the rats once a day for three consecutive days, and MIRI was then induced by subjecting the rats to left anterior descending coronary artery ligation for 30 min and reperfusion for 2 h. The results showed that G-Rb3 treatment significantly reduced the number of apoptotic cells in the myocardium and the expression of B-cell lymphoma 2-associated X protein, and increased the expression of B-cell lymphoma 2. The activities of aspartate aminotransferase, lactate dehydrogenase and creatine kinase-MB in the serum were also reduced significantly by the G-Rb3 treatment. These findings suggest that G-Rb3 inhibits apoptosis in the early stage of MIRI, and attenuates MIRI when the reperfusion continues. G-Rb3 was also shown to significantly reduce the level of malondialdehyde and increase the activity of superoxide dismutase in the myocardium, which suggests that attenuating reactive oxygen species accumulation and oxidative stress may be the major mechanism underlying the anti-apoptotic effects of G-Rb3. The release of inflammatory factors was significantly attenuated by G-Rb3, which may also be associated with its anti-apoptotic effects.
AuthorsXiaomin Liu, Yichuan Jiang, Xiaofeng Yu, Wenwen Fu, Hong Zhang, Dayun Sui
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 8 Issue 6 Pg. 1751-1756 (Dec 2014) ISSN: 1792-0981 [Print] Greece
PMID25371727 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: