HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Selective synthesis and redox sequence of a heterobimetallic nickel/copper complex of the noninnocent Siamese-twin porphyrin.

Abstract
The Siamese-twin porphyrin (1H4) is a redox noninnocent pyrazole-expanded porphyrin with two equivalent dibasic {N4} binding sites. It is now shown that its selective monometalation can be achieved to give the nickel(II) complex 1H2Ni with the second {N4} site devoid of a metal ion. This intermediate is then cleanly converted to 1Ni2 and to the first heterobimetallic Siamese-twin porphyrin 1CuNi. Structural characterization of 1H2Ni shows that it has the same helical structure previously seen for 1Cu2, 1Ni2, and free base 1H6(2+). Titration experiments suggest that the metal-devoid pocket of 1H2Ni can accommodate two additional protons, giving [1H4Ni](2+). Both bimetallic complexes 1Ni2 and 1CuNi feature rich redox chemistry, similar to the recently reported 1Cu2, including two chemically reversible oxidations at moderate potentials between -0.3 and +0.5 V (vs Cp2Fe/Cp2Fe(+)). The locus of these oxidations, in singly oxidized [1Ni2](+) and [1CuNi](+) as well as twice oxidized [1CuNi](2+), has been experimentally derived from comparison of the electrochemical properties of the complete series of complexes 1Cu2, 1Ni2, and 1CuNi, and from electron paramagnetic resonance (EPR) spectroscopy and X-ray absorption spectroscopy (XAS) (Ni and Cu K edges). All redox events are largely ligand-based, and in heterobimetallic 1CuNi, the first oxidation takes place within its Cu-subunit, while the second oxidation then occurs in its Ni-subunit. Adding pyridine to solutions of [1Ni2](+) and [1CuNi](2+) cleanly converts them to metal-oxidized redox isomers with axial EPR spectra typical for Ni(III) having significant dz(2)(1) character, reflecting close similarity with nickel complexes of common porphyrins. The possibility of selectively synthesizing heterobimetallic complexes 1MNi from a symmetric binucleating ligand scaffold, with the unusual situation of three distinct contiguous redox sites (M, Ni, and the porphyrin-like ligand), further expands the Siamese-twin porphyrin's potential to serve as an adjustable platform for multielectron redox processes in chemical catalysis and in electronic applications.
AuthorsLina K Blusch, Oliver Mitevski, Vlad Martin-Diaconescu, Kevin Pröpper, Serena DeBeer, Sebastian Dechert, Franc Meyer
JournalInorganic chemistry (Inorg Chem) Vol. 53 Issue 15 Pg. 7876-85 (Aug 04 2014) ISSN: 1520-510X [Electronic] United States
PMID25014112 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Organometallic Compounds
  • Porphyrins
  • Copper
  • Nickel
Topics
  • Copper (chemistry)
  • Crystallography, X-Ray
  • Electron Spin Resonance Spectroscopy
  • Magnetic Resonance Spectroscopy
  • Nickel (chemistry)
  • Organometallic Compounds (chemical synthesis)
  • Oxidation-Reduction
  • Porphyrins (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: