HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status.

Abstract
Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1Gy (211)At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles.
AuthorsMadeleine Nordén Lyckesvärd, Ulla Delle, Helena Kahu, Sture Lindegren, Holger Jensen, Tom Bäck, John Swanpalmer, Kecke Elmroth
JournalMutation research (Mutat Res) Vol. 765 Pg. 48-56 (Jul 2014) ISSN: 1873-135X [Electronic] Netherlands
PMID24769180 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2014 Elsevier B.V. All rights reserved.
Chemical References
  • Checkpoint Kinase 2
  • Astatine
Topics
  • Alpha Particles (adverse effects)
  • Animals
  • Astatine (adverse effects)
  • Cell Cycle (radiation effects)
  • Cells, Cultured
  • Checkpoint Kinase 2 (metabolism)
  • DNA Damage
  • DNA Repair (radiation effects)
  • Micronuclei, Chromosome-Defective (radiation effects)
  • Swine
  • Thyroid Gland (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: