HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Extinction of an instrumental response: a cognitive behavioral assay in Fmr1 knockout mice.

Abstract
Fragile X (FX) is the most common genetic cause of intellectual disability and autism. Previous studies have shown that partial inhibition of metabotropic glutamate receptor signaling is sufficient to correct behavioral phenotypes in a mouse model of FX, including audiogenic seizures, open-field hyperactivity and social behavior. These phenotypes model well the epilepsy (15%), hyperactivity (20%) and autism (30%) that are comorbid with FX in human patients. Identifying reliable and robust mouse phenotypes to model cognitive impairments is critical considering the 90% comorbidity of FX and intellectual disability. Recent work characterized a five-choice visuospatial discrimination assay testing cognitive flexibility, in which FX model mice show impairments associated with decreases in synaptic proteins in prefrontal cortex (PFC). In this study, we sought to determine whether instrumental extinction, another process requiring PFC, is altered in FX model mice, and whether downregulation of metabotropic glutamate receptor signaling pathways is sufficient to correct both visuospatial discrimination and extinction phenotypes. We report that instrumental extinction is consistently exaggerated in FX model mice. However, neither the extinction phenotype nor the visuospatial discrimination phenotype is corrected by approaches targeting metabotropic glutamate receptor signaling. This work describes a novel behavioral extinction assay to model impaired cognition in mouse models of neurodevelopmental disorders, provides evidence that extinction is exaggerated in the FX mouse model and suggests possible limitations of metabotropic glutamate receptor-based pharmacotherapy.
AuthorsM S Sidorov, D D Krueger, M Taylor, E Gisin, E K Osterweil, M F Bear
JournalGenes, brain, and behavior (Genes Brain Behav) Vol. 13 Issue 5 Pg. 451-8 (Jun 2014) ISSN: 1601-183X [Electronic] England
PMID24684608 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright© 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Chemical References
  • Fmr1 protein, mouse
  • Fragile X Mental Retardation Protein
Topics
  • Animals
  • Cognition
  • Conditioning, Operant
  • Extinction, Psychological
  • Fragile X Mental Retardation Protein (genetics, metabolism)
  • Fragile X Syndrome (genetics, physiopathology)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phenotype
  • Prefrontal Cortex (metabolism)
  • Visual Perception

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: