HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth.

Abstract
Fibroblasts are the most abundant "non-cancerous" cells in tumors. However, it remains largely unknown how these cancer-associated fibroblasts (CAFs) promote tumor growth and metastasis, driving chemotherapy resistance and poor clinical outcome. This review summarizes new findings on CAF signaling pathways and their emerging metabolic phenotypes that promote tumor growth. Although it is well established that altered cancer metabolism enhances tumor growth, little is known about the role of fibroblast metabolism in tumor growth. New studies reveal that metabolic coupling occurs between catabolic fibroblasts and anabolic cancer cells, in many types of human tumors, including breast, prostate, and head & neck cancers, as well as lymphomas. These catabolic phenotypes observed in CAFs are secondary to a ROS-induced metabolic stress response. Mechanistically, this occurs via HIF1-alpha and NFκB signaling, driving oxidative stress, autophagy, glycolysis and senescence in stromal fibroblasts. These catabolic CAFs then create a nutrient-rich microenvironment, to metabolically support tumor growth, via the local stromal generation of mitochondrial fuels (lactate, ketone bodies, fatty acids, glutamine, and other amino acids). New biomarkers of this catabolic CAF phenotype (such as caveolin-1 (Cav-1) and MCT4), which are reversible upon treatment with anti-oxidants, are strong predictors of poor clinical outcome in various types of human cancers. How cancer cells metabolically reprogram fibroblasts can also help us to understand the effects of cancer cells at an organismal level, explaining para-neoplastic phenomena, such as cancer cachexia. In conclusion, cancer should be viewed more as a systemic disease, that engages the host-organism in various forms of energy-transfer and metabolic co-operation, across a whole-body "ecosystem".
AuthorsUbaldo E Martinez-Outschoorn, Michael P Lisanti, Federica Sotgia
JournalSeminars in cancer biology (Semin Cancer Biol) Vol. 25 Pg. 47-60 (Apr 2014) ISSN: 1096-3650 [Electronic] England
PMID24486645 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review)
CopyrightCopyright © 2014 Elsevier Ltd. All rights reserved.
Topics
  • Animals
  • Cell Communication
  • Energy Metabolism
  • Energy Transfer
  • Fibroblasts (metabolism)
  • Humans
  • Neoplasms (metabolism, pathology)
  • Oxidative Stress
  • Signal Transduction
  • Tumor Burden
  • Tumor Microenvironment

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: