HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Use of the antimicrobial peptide pardaxin (GE33) to protect against methicillin-resistant Staphylococcus aureus infection in mice with skin injuries.

Abstract
Antimicrobial peptides (AMPs) have recently been determined to be potential candidates for treating drug-resistant bacterial infections. Pardaxin (GE33), a marine antimicrobial peptide, has been reported to possess antimicrobial function. In this study, we investigated whether pardaxin promoted healing of contaminated wounds in mice. One square centimeter of outer skin was excised from the ventral region of mice, and a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA) was applied in the presence or absence of methicillin, vancomycin, or pardaxin. While untreated mice and mice treated with methicillin died within 3 days, mice treated with pardaxin survived infection. Pardaxin decreased MRSA bacterial counts in the wounded region and also enhanced wound closure. Reepithelialization and dermal maturation were also faster in mice treated with pardaxin than in mice treated with vancomycin. In addition, pardaxin treatment controlled excess recruitment of monocytes and macrophages and increased the expression of vascular endothelial growth factor (VEGF). In conclusion, these results suggest that pardaxin is capable of enhancing wound healing. Furthermore, this study provides an excellent platform for comparing the antimicrobial activities of peptide and nonpeptide antibiotics.
AuthorsHan-Ning Huang, Chieh-Yu Pan, Yi-Lin Chan, Jyh-Yih Chen, Chang-Jer Wu
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 58 Issue 3 Pg. 1538-45 ( 2014) ISSN: 1098-6596 [Electronic] United States
PMID24366739 (Publication Type: Journal Article, Retracted Publication)
Chemical References
  • Anti-Bacterial Agents
  • Fish Venoms
  • pardaxin
Topics
  • Animals
  • Anti-Bacterial Agents (therapeutic use)
  • Bacterial Load
  • Female
  • Fish Venoms (therapeutic use)
  • Methicillin-Resistant Staphylococcus aureus (drug effects)
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Staphylococcal Skin Infections (drug therapy, microbiology)
  • Wound Healing (drug effects)
  • Wound Infection (drug therapy, microbiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: