HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Computational analysis of the effects of reduced temperature on thrombin generation: the contributions of hypothermia to coagulopathy.

AbstractBACKGROUND:
Hypothermia, which can result from tissue hypoperfusion, body exposure, and transfusion of cold resuscitation fluids, is a major factor contributing to coagulopathy of trauma and surgery. Despite considerable efforts, the mechanisms of hypothermia-induced blood coagulation impairment have not been fully understood. We introduce a kinetic modeling approach to investigate the effects of hypothermia on thrombin generation.
METHODS:
We extended a validated computational model to predict and analyze the impact of low temperatures (with or without concomitant blood dilution) on thrombin generation and its quantitative parameters. The computational model reflects the existing knowledge about the mechanistic details of thrombin generation biochemistry. We performed the analysis for an "average" subject, as well as for 472 subjects in the control group of the Leiden Thrombophilia Study.
RESULTS:
We computed and analyzed thousands of kinetic curves characterizing the generation of thrombin and the formation of the thrombin-antithrombin complex (TAT). In all simulations, hypothermia in the temperature interval 31°C to 36°C progressively slowed down thrombin generation, as reflected by clotting time, thrombin peak time, and prothrombin time, which increased in all subjects (P < 10(-5)). Maximum slope of the thrombin curve was progressively decreased, and the area under the thrombin curve was increased in hypothermia (P < 10(-5)); thrombin peak height remained practically unaffected. TAT formation was noticeably delayed (P < 10(-5)), but the final TAT levels were not significantly affected. Hypothermia-induced fold changes in the affected thrombin generation parameters were larger for lower temperatures, but were practically independent of the parameter itself and of the subjects' clotting factor composition, despite substantial variability in the subject group. Hypothermia and blood dilution acted additively on the thrombin generation parameters.
CONCLUSIONS:
We developed a general computational strategy that can be used to simulate the effects of changing temperature on the kinetics of biochemical systems and applied this strategy to analyze the effects of hypothermia on thrombin generation. We found that thrombin generation can be noticeably impaired in subjects with different blood plasma composition even in moderate hypothermia. Our work provides mechanistic support to the notion that thrombin generation impairment may be a key factor in coagulopathy induced by hypothermia and complicated by blood plasma dilution.
AuthorsAlexander Y Mitrophanov, Frits R Rosendaal, Jaques Reifman
JournalAnesthesia and analgesia (Anesth Analg) Vol. 117 Issue 3 Pg. 565-574 (Sep 2013) ISSN: 1526-7598 [Electronic] United States
PMID23868891 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Antithrombins
  • Thrombin
Topics
  • Algorithms
  • Antithrombins (metabolism)
  • Area Under Curve
  • Blood Coagulation Disorders (blood, etiology)
  • Body Temperature (physiology)
  • Hemodilution
  • Humans
  • Hydrogen-Ion Concentration
  • Hypothermia (blood)
  • Kinetics
  • Models, Statistical
  • Prothrombin Time
  • Thrombin (metabolism)
  • Whole Blood Coagulation Time

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: