HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells.

Abstract
Papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) is a newly identified non-coding RNA, which is highly thyroid-specific. Dramatic downregulation in thyroid cancers suggests its potential roles in the occurrence and development of thyroid tumors. The present study aimed to investigate the effects of PTCSC3 on the biological features of thyroid cancer cells and to explore its possible function as a competing endogenous RNA to bind with miRNAs. Constructs containing the long non-coding RNA, PTCSC3, were transfected into various thyroid cancer cell lines (BCPAP, FTC133 and 8505C). Cell growth, cell cycle transition and apoptosis were measured by MTT assay and flow cytometry. In silico analysis was performed to identify the binding site of PTCSC3 for target miRNAs. Additionally, detection of putative miRNA by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in thyroid cancer cells transfected with PTCSC3 was determined to confirm the interaction. Following transfection with PTCSC3, all three thyroid cancer cells originating from various pathological types of thyroid cancers demonstrated significant growth inhibition, cell cycle arrest and increased apoptosis. The top 20 miRNAs to have a potential interaction with PTCSC3 were identified, out of which miR-574-5p was selected to further confirm the inverse correlation with PTCSC3 in thyroid cancer cells in vitro. In the present study, PTCSC3 as a tumor suppressor was investigated as a competing endogenous RNA for miR-574-5p.
AuthorsMin Fan, Xinying Li, Wei Jiang, Yun Huang, Jingdong Li, Zhiming Wang
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 5 Issue 4 Pg. 1143-1146 (Apr 2013) ISSN: 1792-0981 [Print] Greece
PMID23599737 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: