HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions.

Abstract
The relationships between oxidation-specific epitopes (OSE) and lipoprotein (a) [Lp(a)] and progressive atherosclerosis and plaque rupture have not been determined. Coronary artery sections from sudden death victims and carotid endarterectomy specimens were immunostained for apoB-100, oxidized phospholipids (OxPL), apo(a), malondialdehyde-lysine (MDA), and MDA-related epitopes detected by antibody IK17 and macrophage markers. The presence of OxPL captured in carotid and saphenous vein graft distal protection devices was determined with LC-MS/MS. In coronary arteries, OSE and apo(a) were absent in normal coronary arteries and minimally present in early lesions. As lesions progressed, apoB and MDA epitopes did not increase, whereas macrophage, apo(a), OxPL, and IK17 epitopes increased proportionally, but they differed according to plaque type and plaque components. Apo(a) epitopes were present throughout early and late lesions, especially in macrophages and the necrotic core. IK17 and OxPL epitopes were strongest in late lesions in macrophage-rich areas, lipid pools, and the necrotic core, and they were most specifically associated with unstable and ruptured plaques. Specific OxPL were present in distal protection devices. Human atherosclerotic lesions manifest a differential expression of OSEs and apo(a) as they progress, rupture, and become clinically symptomatic. These findings provide a rationale for targeting OSE for biotheranostic applications in humans.
AuthorsRogier A van Dijk, Frank Kolodgie, Amir Ravandi, Gregor Leibundgut, Patrick P Hu, Anand Prasad, Ehtisham Mahmud, Edward Dennis, Linda K Curtiss, Joseph L Witztum, Bruce A Wasserman, Fumiyuki Otsuka, Renu Virmani, Sotirios Tsimikas
JournalJournal of lipid research (J Lipid Res) Vol. 53 Issue 12 Pg. 2773-90 (Dec 2012) ISSN: 1539-7262 [Electronic] United States
PMID22969153 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Apolipoproteins A
  • Biomarkers
  • Epitopes
Topics
  • Apolipoproteins A (analysis, biosynthesis)
  • Atherosclerosis (diagnosis, metabolism, therapy)
  • Biomarkers (analysis, metabolism)
  • Carotid Artery Diseases (diagnosis, metabolism, therapy)
  • Epitopes (analysis, biosynthesis)
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxidation-Reduction
  • Plaque, Atherosclerotic (diagnosis, metabolism, therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: