HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Preclinical molecular imaging of the translocator protein (TSPO) in a metastases model based on breast cancer xenografts propagated in the murine brain.

Abstract
Previous studies have demonstrated the feasibility of translocator protein (TSPO) imaging to visualize and quantify human breast adenocarcinoma (MDA-MB-231) cells in vivo using a TSPO-targeted near-infrared (NIR) probe (NIR-conPK11195). This study aimed to extend the use of the TSPO-targeted probe to a more biologically relevant and clinically important tumor microenvironment as well as to assess our ability to longitudinally detect the presence and progression of breast cancer cells in the brain. The in vivo biodistribution and accumulation of NIR-conPK11195 and free (unconjugated) NIR dye were quantitatively evaluated in intracranial MDA-MB-231-bearing mice and non-tumor-bearing control mice longitudinally once a week from two to five weeks post-inoculation. The in vivo time-activity curves illustrate distinct clearance profiles for NIR-conPK11195 and free NIR dye, resulting in preferential accumulation of the TSPO-targeted probe in the intracranial tumor bearing hemisphere (TBH) with significant tumor contrast over normal muscle tissue (p < 0.005 at five weeks; p < 0.01 at four weeks). In addition, the TSPO-labeled TBHs demonstrated significant contrast over the TBHs of mice injected with free NIR dye (p < 0.001 at four and five weeks) as well as over the TSPO-labeled non-tumor-bearing hemispheres (NTBHs) of control mice (p < 0.005 at four and five weeks). Overall, TSPO-targeted molecular imaging appears useful for visualizing and quantifying breast cancer xenografts propagated in the murine brain and may assist in preclinical detection, diagnosis and monitoring of metastatic disease as well as drug discovery. Furthermore, these results indicate it should be possible to perform TSPO-imaging of breast cancer cells in the brain using radiolabeled TSPO-targeted agents, particularly in light of the fact that [11C]-labeled TSPO probes such as [11C]-PK 11195 have been successfully used to image gliomas in the clinic.
AuthorsShelby K Wyatt, H Charles Manning, Mingfeng Bai, Moneeb Ehtesham, Khubaib Y Mapara, Reid C Thompson, Darryl J Bornhop
JournalCurrent molecular medicine (Curr Mol Med) Vol. 12 Issue 4 Pg. 458-66 (May 2012) ISSN: 1875-5666 [Electronic] Netherlands
PMID22348613 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Carbocyanines
  • Isoquinolines
  • Molecular Probes
  • NIR-conPK11195
  • Receptors, GABA
  • TSPO protein, human
Topics
  • Adenocarcinoma (diagnosis, metabolism)
  • Animals
  • Brain (metabolism, pathology)
  • Brain Neoplasms (diagnosis, secondary)
  • Breast Neoplasms (pathology)
  • Carbocyanines (pharmacokinetics)
  • Cell Line, Tumor
  • Female
  • Humans
  • Isoquinolines (pharmacokinetics)
  • Mice
  • Mice, Nude
  • Molecular Imaging
  • Molecular Probes (pharmacokinetics)
  • Neoplasm Transplantation
  • Receptors, GABA
  • Tissue Distribution
  • Transplantation, Heterologous
  • Whole Body Imaging

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: