HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

(-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle.

Abstract
The flavanol (-)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (-)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water-exercise (W-Ex), (3) (-)-epicatechin ((-)-Epi), and (4) (-)-epicatechin-exercise ((-)-Epi-Ex). Animals received 1 mg kg(-1) of (-)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (-)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (-)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (-)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (-)-epicatechin alone. These findings indicate that (-)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (-)-epicatechin and its potential clinical application as an exercise mimetic.
AuthorsLeonardo Nogueira, Israel Ramirez-Sanchez, Guy A Perkins, Anne Murphy, Pam R Taub, Guillermo Ceballos, Francisco J Villarreal, Michael C Hogan, Moh H Malek
JournalThe Journal of physiology (J Physiol) Vol. 589 Issue Pt 18 Pg. 4615-31 (Sep 15 2011) ISSN: 1469-7793 [Electronic] England
PMID21788351 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Antioxidants
  • Catechin
Topics
  • Animals
  • Antioxidants (pharmacology)
  • Capillaries (anatomy & histology)
  • Catechin (pharmacology)
  • Hindlimb
  • In Vitro Techniques
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mitochondria, Muscle (drug effects, ultrastructure)
  • Models, Animal
  • Muscle Contraction (drug effects, physiology)
  • Muscle Fatigue (drug effects, physiology)
  • Muscle, Skeletal (blood supply, drug effects, metabolism)
  • Oxidation-Reduction
  • Physical Conditioning, Animal (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: