HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Subcellular localization of hematoporphyrin derivative in bladder tumor cells in culture.

Abstract
Mitochondria have been implicated as a primary subcellular site of porphyrin localization and photodestruction. However, other organelles including the cell membrane, lysosomes and nucleus have been shown to be damaged by hematoporphyrin derivative (HpD) photosensitized destruction as well. In this study we attempted to follow the translocation of the fluorescent components of HpD in human bladder tumor cells (MGH-U1) in culture to determine whether specific subcellular localization occurs over time. Following a 30 min exposure to HpD the cellular fluorescence was examined immediately and 1, 2, 4, and 24 h after HpD removal using fluorescence microscopy and an interactive laser cytometer. The in vitro translocation of dye appeared to be fairly rapid with fluorescence present at the cell membrane and later (1-2 h) within a perinuclear area of the cytoplasm. To determine whether HpD had become concentrated into a specific subcellular organelle, these fluorescence distribution patterns were compared with fluorescent marker dyes specific for mitochondria, endoplasmic reticulum and other membranous organelles. The HpD fluorescence did not appear to be as discrete as the dyes specific for mitochondria or endoplasmic reticulum but appeared similar to the diffuse cytomembrane stain. Finally, the interaction between the fluorescent components of HpD and the cellular constituents was evaluated using a "fluorescence redistribution after photobleaching" technique. The results indicated that the mean lateral diffusion for HpD in MGH-U1 cells was 1.05 x 10(-8) cm2/s, a rate closer to that of lipid diffusion (10(-8)) than that of protein diffusion (10(-10)).(ABSTRACT TRUNCATED AT 250 WORDS)
AuthorsJ R Shulok, M H Wade, C W Lin
JournalPhotochemistry and photobiology (Photochem Photobiol) Vol. 51 Issue 4 Pg. 451-7 (Apr 1990) ISSN: 0031-8655 [Print] United States
PMID2140450 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Hematoporphyrins
  • Radiation-Sensitizing Agents
  • Hematoporphyrin Derivative
Topics
  • Cell Line
  • Hematoporphyrin Derivative
  • Hematoporphyrins (metabolism)
  • Humans
  • Microscopy, Fluorescence
  • Radiation-Sensitizing Agents (metabolism)
  • Tumor Cells, Cultured (cytology, metabolism)
  • Urinary Bladder Neoplasms

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: