HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

1,2,3,4,6-Penta-O-galloyl-beta-D-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model.

Abstract
Adhesion of calcium oxalate (CaOx) crystals to kidney cells may be a key event in the pathogenesis of kidney stones associated with marked hyperoxaluria. Previously, we found that 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), isolated from a traditional medicinal herb, reduced CaOx crystal adhesion to renal epithelial cells by acting on the cells as well as on the crystal surface. Here we used the ethylene glycol (EG)-mediated hyperoxaluric rat model and found evidence of oxidant stress as indicated by decreases in the activities of the renal antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, with increased kidney cell apoptosis and serum malondialdehyde levels, all evident by 21 days of EG treatment. These effects of hyperoxaluria were reversed by concurrent PGG treatment along with decreased urinary oxalate levels and CaOx supersaturation. Renal epithelial cell expression of the crystal binding molecule hyaluronan increased diffusely within 7 days of EG initiation, suggesting it is not a result of but precedes crystal deposition. Renal cell osteopontin (OPN) was also upregulated in EG-treated animals, and PGG significantly attenuated overexpression of both OPN and hyaluronan. Thus, our findings demonstrate that PGG reduces renal crystallization and oxidative renal cell injury, and may be a candidate chemopreventive agent for nephrolithiasis.
AuthorsHyo-Jung Lee, Soo-Jin Jeong, Hyo-Jeong Lee, Eun-Ok Lee, Hyunsu Bae, John C Lieske, Sung-Hoon Kim
JournalKidney international (Kidney Int) Vol. 79 Issue 5 Pg. 538-45 (Mar 2011) ISSN: 1523-1755 [Electronic] United States
PMID21085110 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Hydrolyzable Tannins
  • Reactive Oxygen Species
  • Osteopontin
  • pentagalloylglucose
  • Hyaluronic Acid
  • Superoxide Dismutase
  • Ethylene Glycol
Topics
  • Animals
  • Apoptosis (drug effects)
  • Crystallization
  • Ethylene Glycol
  • Hyaluronic Acid (analysis)
  • Hydrolyzable Tannins (pharmacology, therapeutic use)
  • Hyperoxaluria (drug therapy)
  • Kidney (metabolism)
  • Kidney Calculi (prevention & control)
  • Male
  • Osteopontin (analysis)
  • Oxidative Stress (drug effects)
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species (metabolism)
  • Superoxide Dismutase (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: