HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of cannabinoid CB1 receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys.

Abstract
Antipsychotic drugs may cause extrapyramidal symptoms (EPS), such as dyskinesia and dystonia. These effects are believed to involve dysfunctional striatal dopamine transmission. Patients with schizophrenia show increased prevalence of cannabis abuse and this has been linked to severity of EPS. Endocannabinoids modulate striatal dopamine activity via type 1 cannabinoid (CB(1)) receptors, and studies in rats and humans suggest beneficial effects of CB(1) ligands on EPS. The present study explored the effects of CB(1) receptor ligands on oral dyskinesia induced by the dopamine D(1) receptor agonist SKF81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated for oral dyskinesia or dystonia. SKF-induced oral dyskinesia was dose-dependently reduced by CP55,940, with no effect of SR141716A. Haloperidol-induced dystonia was not affected by either CP55,940 or SR141716A.
AuthorsMorten V Madsen, Linda P Peacock, Thomas Werge, Maibritt B Andersen, Jesper T Andreasen
JournalNeuropharmacology (Neuropharmacology) 2011 Feb-Mar Vol. 60 Issue 2-3 Pg. 418-22 ISSN: 1873-7064 [Electronic] England
PMID21029743 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2010 Elsevier Ltd. All rights reserved.
Chemical References
  • Benzazepines
  • Cyclohexanols
  • Piperidines
  • Pyrazoles
  • Receptor, Cannabinoid, CB1
  • SK&F 81297
  • 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol
  • Haloperidol
  • Rimonabant
Topics
  • Animals
  • Benzazepines (toxicity)
  • Cebus
  • Cyclohexanols (pharmacology, therapeutic use)
  • Dose-Response Relationship, Drug
  • Dyskinesia, Drug-Induced (drug therapy, physiopathology)
  • Dystonia (chemically induced, drug therapy, physiopathology)
  • Haloperidol (toxicity)
  • Male
  • Piperidines (pharmacology, therapeutic use)
  • Pyrazoles (pharmacology, therapeutic use)
  • Receptor, Cannabinoid, CB1 (agonists, antagonists & inhibitors, physiology)
  • Rimonabant

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: