HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Differential effects of myopathy-associated caveolin-3 mutants on growth factor signaling.

Abstract
Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented.
AuthorsEva Brauers, Agnes Dreier, Andreas Roos, Berthold Wormland, Joachim Weis, Alexander Krüttgen
JournalThe American journal of pathology (Am J Pathol) Vol. 177 Issue 1 Pg. 261-70 (Jul 2010) ISSN: 1525-2191 [Electronic] United States
PMID20472890 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Caveolin 3
  • Receptor, Nerve Growth Factor
  • Epidermal Growth Factor
  • Nerve Growth Factor
  • ErbB Receptors
  • Extracellular Signal-Regulated MAP Kinases
Topics
  • Adult
  • Animals
  • Caveolin 3 (genetics, metabolism)
  • Cell Line
  • Epidermal Growth Factor (metabolism)
  • ErbB Receptors (metabolism)
  • Extracellular Signal-Regulated MAP Kinases (metabolism)
  • Humans
  • Male
  • Mice
  • Middle Aged
  • Muscular Diseases (genetics, metabolism)
  • Mutation
  • Nerve Growth Factor (metabolism)
  • Rats
  • Receptor, Nerve Growth Factor (metabolism)
  • Signal Transduction (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: