HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis.

AbstractUNLABELLED:
Organic solute transporter alpha-beta (Ostalpha-Ostbeta) is a heteromeric bile acid and sterol transporter that facilitates the enterohepatic and renal-hepatic circulation of bile acids. Hepatic expression of this basolateral membrane protein is increased in cholestasis, presumably to facilitate removal of toxic bile acids from the liver. In this study, we show that the cholestatic phenotype induced by common bile duct ligation (BDL) is reduced in mice genetically deficient in Ostalpha. Although Ostalpha(-/-) mice have a smaller bile acid pool size, which could explain lower serum and hepatic levels of bile acids after BDL, gallbladder bilirubin and urinary bile acid concentrations were significantly greater in Ostalpha(-/-) BDL mice, suggesting additional alternative adaptive responses. Livers of Ostalpha(-/-) mice had higher messenger RNA levels of constitutive androstane receptor (Car) than wild-type BDL mice and increased expression of Phase I enzymes (Cyp7a1, Cyp2b10, Cyp3a11), Phase II enzymes (Sult2a1, Ugt1a1), and Phase III transporters (Mrp2, Mrp3). Following BDL, the bile acid pool size increased in Ostalpha(-/-) mice and protein levels for the hepatic basolateral membrane export transporters, multidrug resistance-associated protein 3 (Mrp3) and Mrp4, and for the apical bilirubin transporter, Mrp2, were all increased. In the kidney of Ostalpha(-/-) mice after BDL, the apical bile acid uptake transporter Asbt is further reduced, whereas the apical export transporters Mrp2 and Mrp4 are increased, resulting in a significant increase in urinary bile acid excretion.
CONCLUSION:
These findings indicate that loss of Ostalpha provides protection from liver injury in obstructive cholestasis through adaptive responses in both the kidney and liver that enhance clearance of bile acids into urine and through detoxification pathways most likely mediated by the nuclear receptor Car.
AuthorsCarol J Soroka, Albert Mennone, Lee R Hagey, Nazzareno Ballatori, James L Boyer
JournalHepatology (Baltimore, Md.) (Hepatology) Vol. 51 Issue 1 Pg. 181-90 (Jan 2010) ISSN: 1527-3350 [Electronic] United States
PMID19902485 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Bile Acids and Salts
  • Membrane Transport Proteins
  • organic solute transporter alpha, mouse
Topics
  • Animals
  • Bile Acids and Salts (urine)
  • Bile Ducts (physiology)
  • Cholestasis (metabolism)
  • Ligation
  • Membrane Transport Proteins (deficiency)
  • Mice

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: