HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pulmonary function and spinal cord injury.

Abstract
Injury to the cervical and upper thoracic spinal cord disrupts function of inspiratory and expiratory muscles, as reflected by reduction in spirometric and lung volume parameters and static mouth pressures. In association, subjects with tetraplegia have decreased chest wall and lung compliance, increased abdominal wall compliance, and rib cage stiffness with paradoxical chest wall movements, all of which contribute to an increase in the work of breathing. Expiratory muscle function is more compromised than inspiratory muscle function among subjects with tetraplegia and high paraplegia, which can result in ineffective cough and propensity to mucus retention and atelectasis. Subjects with tetraplegia also demonstrate heightened vagal activity with reduction in baseline airway caliber, findings attributed to loss of sympathetic innervation to the lungs. Significant increase in airway caliber following inhalation of ipratropium bromide, an anticholinergic agent, suggests that reduction in airway caliber is not due to acquired airway fibrosis stemming from repeated infections or to abnormal hysteresis secondary to chronic inability of subjects to inhale to predicted total lung capacity. Reduced baseline airway caliber possibly explains why subjects with tetraplegia exhibit airway hyperresponsiveness to methacholine and ultrasonically nebulized distilled water. While it has been well demonstrated that bilateral phrenic nerve pacing or stimulation through intramuscular diaphragmatic electrodes improves inspiratory muscle function, it remains unclear if inspiratory muscle training improves pulmonary function. Recent findings suggest that expiratory muscle training, electrical stimulation of expiratory muscles and administration of a long-acting beta(2)-agonist (salmeterol) improve physiological parameters and cough. It is unknown if baseline bronchoconstriction in tetraplegia contributes to respiratory symptoms, of if the chronic administration of a bronchodilator reduces the work of breathing and/or improves respiratory symptoms. Less is known regarding the benefits of treatment of obstructive sleep apnea, despite evidence indicating that the prevalence of this condition in persons with tetraplegia is far greater than that encountered in able-bodied individuals.
AuthorsGregory J Schilero, Ann M Spungen, William A Bauman, Miroslav Radulovic, Marvin Lesser
JournalRespiratory physiology & neurobiology (Respir Physiol Neurobiol) Vol. 166 Issue 3 Pg. 129-41 (May 15 2009) ISSN: 1878-1519 [Electronic] Netherlands
PMID19442929 (Publication Type: Journal Article, Review)
Topics
  • Animals
  • Humans
  • Respiration Disorders (etiology)
  • Respiratory Mechanics (physiology)
  • Spinal Cord Injuries (complications)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: