HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats.

AbstractBACKGROUND:
Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats.
METHODOLOGY/PRINCIPAL FINDINGS:
We demonstrated that defect of glucose and lipid metabolism is associated with low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle of the diabetic Goto-Kakizaki rats. The treatment of combination of R-alpha-lipoic acid, acetyl-L-carnitine, nicotinamide, and biotin effectively improved glucose tolerance, decreased the basal insulin secretion and the level of circulating free fatty acid (FFA), and prevented the reduction of mitochondrial biogenesis in skeletal muscle. The nutrients treatment also significantly increased mRNA levels of genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-alpha (Ppar alpha), peroxisome proliferator-activated receptor-delta (Ppar delta), and carnitine palmitoyl transferase-1 (Mcpt-1) and activity of mitochondrial complex I and II in skeletal muscle. All of these effects of mitochondrial nutrients are comparable to that of the antidiabetic drug, pioglitazone. In addition, the treatment with nutrients, unlike pioglitazone, did not cause body weight gain.
CONCLUSIONS/SIGNIFICANCE:
These data suggest that a combination of mitochondrial targeting nutrients may improve skeletal mitochondrial dysfunction and exert hypoglycemic effects, without causing weight gain.
AuthorsWeili Shen, Jiejie Hao, Chuan Tian, Jinmin Ren, Lu Yang, Xuesen Li, Cheng Luo, Carl W Cotma, Jiankang Liu
JournalPloS one (PLoS One) Vol. 3 Issue 6 Pg. e2328 (Jun 04 2008) ISSN: 1932-6203 [Electronic] United States
PMID18523557 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA, Mitochondrial
  • Fatty Acids, Nonesterified
  • Muscle Proteins
Topics
  • Animals
  • DNA, Mitochondrial (metabolism)
  • Diabetes Mellitus, Experimental (physiopathology)
  • Diabetes Mellitus, Type 2 (physiopathology)
  • Dietary Supplements
  • Fatty Acids, Nonesterified (blood)
  • Glucose Tolerance Test
  • Mitochondria, Muscle (drug effects, metabolism, physiology)
  • Muscle Proteins (metabolism)
  • Muscle, Skeletal (drug effects, metabolism, physiopathology)
  • Rats
  • Rats, Mutant Strains

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: