HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Parallel microfluidic networks for studying cellular response to chemical modulation.

Abstract
A microfluidic chip featuring parallel gradient-generating networks etched on glass plate was designed and fabricated. The dam and weir structures were fabricated to facilitate cell positioning and seeding, respectively. The microchip contains five gradient generators and 30 cell chambers where the resulted concentration gradients of drugs are delivered to stimulate the on-chip cultured cells. This microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell operations including seeding, culture, stimulation and staining into a chip. Steady parallel concentration gradients were generated by flowing two fluids in each network. The microchip described above was applied in studying the role of reduced glutathione (GSH) in MCF-7 cells' chemotherapy sensitivity. The parental breast cancer cell line, MCF-7 and the derived adriamycin resistant cell line MCF-7(adm) were treated with concentration gradients of arsenic trioxide (ATO) and N-acetyl cysteine (NAC) for GSH modulation, followed by exposure to adriamycin. The intracellular GSH level and cell viability were assessed by fluorescence image analysis. GSH levels of both cell lines were down-regulated upon ATO treatment and up-regulated upon NAC treatment. For both cell lines, suppression of intracellular GSH by treatment with ATO has been shown to increase chemotherapy sensitivity; conversely, elevation of intracellular GSH by treatment with NAC leads to increased drug resistance. The results indicated that high intracellular GSH level has negative effect on chemotherapy sensitivity, while depletion of cellular GSH may serve as an effective way to improve chemotherapy sensitivity. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, thus, holds great potential for extrapolation to the high-content drug screening.
AuthorsDayu Liu, Lihui Wang, Runtao Zhong, Bowei Li, Nannan Ye, Xin Liu, Bingcheng Lin
JournalJournal of biotechnology (J Biotechnol) Vol. 131 Issue 3 Pg. 286-92 (Sep 15 2007) ISSN: 0168-1656 [Print] Netherlands
PMID17706314 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Glutathione
Topics
  • Antineoplastic Agents (administration & dosage)
  • Biological Assay (instrumentation, methods)
  • Breast Neoplasms (metabolism)
  • Cell Culture Techniques (instrumentation, methods)
  • Drug Evaluation, Preclinical (instrumentation, methods)
  • Equipment Design
  • Equipment Failure Analysis
  • Flow Injection Analysis (instrumentation, methods)
  • Glutathione (metabolism)
  • Humans
  • Microfluidic Analytical Techniques (instrumentation, methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: