HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Glibenclamide dose response in patients with septic shock: effects on norepinephrine requirements, cardiopulmonary performance, and global oxygen transport.

Abstract
Adenosine triphosphate-sensitive potassium channels are important regulators of arterial vascular smooth muscle tone and are implicated in the pathophysiology of catecholamine tachyphylaxis in septic shock. The present study was designed as a prospective, randomized, double-blinded, clinical pilot study to determine whether different doses of glibenclamide have any effects on norepinephrine requirements, cardiopulmonary hemodynamics, and global oxygen transport in patients with septic shock. We enrolled 30 patients with septic shock requiring invasive hemodynamic monitoring and norepinephrine infusion of 0.5 microg.kg-1.min-1 or greater to maintain MAP between 65 and 75 mmHg. In addition to standard therapy, patients were randomized to receive either 10, 20, or 30 mg of enteral glibenclamide. Systemic hemodynamics, global oxygen transport including arterial lactate concentrations, gas exchange, plasma glucose concentrations, and electrolytes were determined at baseline and after 3, 6, and 12 h after administration of the study drug. Glibenclamide decreased plasma glucose concentrations in a dose-dependent manner but failed to reduce norepinephrine requirements. None of the doses had any effects on cardiopulmonary hemodynamics, global oxygen transport, gas exchange, or electrolytes. These data suggest that oral glibenclamide in doses from 10 to 30 mg fails to counteract arterial hypotension and thus to reduce norepinephrine requirements in catecholamine-dependent human septic shock.
AuthorsAndrea Morelli, Matthias Lange, Christian Ertmer, Katrin Broeking, Hugo Van Aken, Alessandra Orecchioni, Monica Rocco, Alessandra Bachetoni, Daniel L Traber, Giovanni Landoni, Paolo Pietropaoli, Martin Westphal
JournalShock (Augusta, Ga.) (Shock) Vol. 28 Issue 5 Pg. 530-5 (Nov 2007) ISSN: 1073-2322 [Print] United States
PMID17589379 (Publication Type: Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't)
Chemical References
  • Blood Glucose
  • Catecholamines
  • Hypoglycemic Agents
  • Potassium Channels
  • Vasoconstrictor Agents
  • Lactic Acid
  • Adenosine Triphosphate
  • Oxygen
  • Glyburide
  • Norepinephrine
Topics
  • Adenosine Triphosphate (metabolism)
  • Aged
  • Biological Transport (drug effects)
  • Blood Glucose (analysis)
  • Catecholamines (metabolism)
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Female
  • Glyburide (administration & dosage)
  • Hemodynamics (drug effects)
  • Humans
  • Hypoglycemic Agents (administration & dosage)
  • Hypotension
  • Lactic Acid (blood)
  • Lung (metabolism, physiopathology)
  • Male
  • Middle Aged
  • Monitoring, Physiologic
  • Muscle Tonus (drug effects)
  • Muscle, Smooth, Vascular (metabolism, physiopathology)
  • Norepinephrine (administration & dosage)
  • Oxygen (metabolism)
  • Pilot Projects
  • Potassium Channels (metabolism)
  • Pulmonary Gas Exchange (drug effects)
  • Shock, Septic (blood, drug therapy, pathology, physiopathology)
  • Vasoconstrictor Agents (administration & dosage)
  • Water-Electrolyte Balance (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: