HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

UCN-01-induced cell cycle arrest requires the transcriptional induction of p21(waf1/cip1) by activation of mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway.

Abstract
The small molecule UCN-01 is a cyclin-dependent kinase (CDK) modulator shown to have antiproliferative effects against several in vitro and in vivo cancer models currently being tested in human clinical trials. Although UCN-01 may inhibit several serine-threonine kinases, the exact mechanism by which it promotes cell cycle arrest is still unclear. We have reported previously that UCN-01 promotes G(1)-S cell cycle arrest in a battery of head and neck squamous cancer cell lines. The arrest is accompanied by an increase in both p21(waf1/cip1) and p27(kip1) CDK inhibitors leading to loss in G(1) CDK activity. In this report, we explore the role and the mechanism for the induction of these endogenous CDK inhibitors. We observed that p21 was required for the cell cycle effects of UCN-01, as HCT116 lacking p21 (HCT116 p21(-/-)) was refractory to the cell cycle effects of UCN-01. Moreover, UCN-01 promoted the accumulation of p21 at the mRNA level in the p53-deficient HaCaT cells without increase in the p21 mRNA half-life, suggesting that UCN-01 induced p21 at the transcriptional level. To study UCN-01 transcriptional activation of p21, we used several p21(waf1/cip1) promoter-driven luciferase reporter plasmids and observed that UCN-01 activated the full-length p21(waf1/cip1) promoter and a construct lacking p53 binding sites. The minimal promoter region required for UCN-01 (from -110 bp to the transcription start site) was the same minimal p21(waf1/cip1) promoter region required for Ras enhancement of p21(waf1/cip1) transcription. Neither protein kinase C nor PDK1/AKT pathways were relevant for the induction of p21 by UCN-01. In contrast, the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase mitogen-activated protein kinase pathways was required for p21 induction as UCN-01 activated this pathway, and genetic or chemical MEK inhibitors blunted p21 accumulation. These results demonstrated for the first time that p21 is required for UCN-01 cell cycle arrest. Moreover, we showed that the accumulation of p21 is transcriptional via activation of the MEK pathway. This novel mechanism, by which UCN-01 exerts its antiproliferative effect, represents a promising strategy to be exploited in future clinical trials.
AuthorsMaria M Facchinetti, Adriana De Siervi, Doreen Toskos, Adrian M Senderowicz
JournalCancer research (Cancer Res) Vol. 64 Issue 10 Pg. 3629-37 (May 15 2004) ISSN: 0008-5472 [Print] United States
PMID15150122 (Publication Type: Journal Article)
Chemical References
  • Antineoplastic Agents
  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • Proto-Oncogene Proteins
  • RNA, Messenger
  • 7-hydroxystaurosporine
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Protein Kinase C
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase Kinase 1
  • MAP Kinase Kinase Kinases
  • MAP3K1 protein, human
  • Staurosporine
Topics
  • Antineoplastic Agents (pharmacology)
  • Cell Cycle (drug effects)
  • Cell Line
  • Cell Nucleus (drug effects, metabolism)
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins (biosynthesis, genetics)
  • Genes, ras (physiology)
  • HCT116 Cells
  • Humans
  • Keratinocytes (cytology, drug effects, enzymology)
  • MAP Kinase Kinase Kinase 1
  • MAP Kinase Kinase Kinases (metabolism)
  • MAP Kinase Signaling System (drug effects, physiology)
  • Mitogen-Activated Protein Kinase 1 (metabolism)
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases (metabolism)
  • Promoter Regions, Genetic (drug effects)
  • Protein Kinase C (metabolism)
  • Protein Serine-Threonine Kinases (metabolism)
  • Proto-Oncogene Proteins (metabolism)
  • Proto-Oncogene Proteins c-akt
  • RNA, Messenger (biosynthesis, genetics, metabolism)
  • Staurosporine (analogs & derivatives, pharmacology)
  • Transcriptional Activation (drug effects)
  • Transfection
  • Up-Regulation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: