HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Fos expression in spinothalamic and postsynaptic dorsal column neurons following noxious visceral and cutaneous stimuli.

Abstract
The spinothalamic tract (STT) has been classically viewed as the major ascending pathway for pain transmission while the dorsal column (DC) was thought to be involved primarily in signaling innocuous stimuli. Recent clinical studies have shown that limited midline myelotomy, which transects fibers in the DC, offers good pain relief in patients with visceral cancer pain. Experimental studies provided evidence that a DC lesion decreases the activation of thalamic neurons by visceral stimuli and suggested that this effect is due to transection of the axons of postsynaptic dorsal column (PSDC) neurons. In our study, Fos protein expression in retrogradely labeled STT and PSDC neurons in the lumbosacral enlargement in rats was used as an anatomical marker of enhanced activation to compare the role of these neurons in cutaneous and visceral pain. The noxious stimuli used were intradermal injection of capsaicin and distention of the ureter. Retrogradely labeled PSDC neurons were found in laminae III-IV and in the vicinity of the central canal. STT neurons were located in laminae I, III-VII and X. Ureter distention evoked Fos expression in PSDC and STT neurons located in all laminae in which retrogradely labeled cells were found, with the maximum in the L(2) spinal segment. The Fos-positive PSDC neurons represented a significantly higher percentage of the retrogradely labeled PSDC neurons (19.3+/-2.3% SEM) than of the STT Fos-positive neurons (13.2+/-1.5% SEM). Intradermal capsaicin injection also evoked Fos expression in both PSDC and STT neurons, but with no significant difference between these two, when expressed as a percentage of the retrogradely labeled cells (11.6+/-2.9% SEM, 10.8+/-1.1% SEM). These results show that both PSDC and STT neurons are activated by cutaneous and visceral noxious stimuli. Their particular role in transmission and modulation of painful stimuli needs to be investigated further.
AuthorsJ Palecek, V Paleckova, W D Willis
JournalPain (Pain) Vol. 104 Issue 1-2 Pg. 249-57 (Jul 2003) ISSN: 0304-3959 [Print] United States
PMID12855335 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Proto-Oncogene Proteins c-fos
Topics
  • Animals
  • Gene Expression Regulation (physiology)
  • Male
  • Pain (metabolism)
  • Pain Measurement (methods)
  • Physical Stimulation (adverse effects)
  • Posterior Horn Cells (metabolism)
  • Proto-Oncogene Proteins c-fos (biosynthesis, genetics)
  • Rats
  • Rats, Sprague-Dawley
  • Spinothalamic Tracts (metabolism)
  • Touch (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: