HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency.

Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). This deficiency of TP leads to increased circulating levels of thymidine (deoxythymidine, dThd) and deoxyuridine (dUrd) and has been associated with multiple deletions and depletion of mitochondrial DNA (mtDNA). Here we describe 36 point mutations in mtDNA of tissues and cultured cells from MNGIE patients. Thirty-one mtDNA point mutations (86%) were T-to-C transitions, and of these, 25 were preceded by 5'-AA sequences. In addition, we identified a single base-pair mtDNA deletion and a TT-to-AA mutation. Next-nucleotide effects and dislocation mutagenesis may contribute to the formation of these mutations. These results provide the first demonstration that alterations of nucleoside metabolism can induce multiple sequence-specific point mutations in humans. We hypothesize that, in patients with TP deficiency, increased levels of dThd and dUrd cause mitochondrial nucleotide pool imbalances, which, in turn, lead to mtDNA abnormalities including site-specific point mutations.
AuthorsYutaka Nishigaki, Ramon Martí, William C Copeland, Michio Hirano
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 111 Issue 12 Pg. 1913-21 (Jun 2003) ISSN: 0021-9738 [Print] United States
PMID12813027 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • DNA, Mitochondrial
  • Electron Transport Complex IV
  • Thymidine Phosphorylase
  • Deoxyuridine
Topics
  • Base Sequence
  • Cells, Cultured
  • DNA Mutational Analysis
  • DNA, Mitochondrial (genetics)
  • Deoxyuridine (metabolism)
  • Electron Transport Complex IV (metabolism)
  • Gastrointestinal Diseases (enzymology, genetics)
  • Humans
  • Mitochondrial Encephalomyopathies (enzymology, genetics)
  • Models, Genetic
  • Point Mutation
  • Polymorphism, Restriction Fragment Length
  • Sequence Deletion
  • Thymidine Phosphorylase (deficiency, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: