HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Serotonergic sensory-motor neurons mediate a behavioral response to hypoxia in pond snail embryos.

Abstract
Oxygen (O(2)) is one of the most important environmental factors that affects both physiological processes and development of aerobic animals, yet little is known about the neural mechanism of O(2) sensing and adaptive responses to low O(2) (hypoxia) during development. In the pond snail, Helisoma trivolvis, the first embryonic neurons (ENC1s) to develop are a pair of serotonergic sensory-motor cells that regulate a cilia-driven rotational behavior. Here, we report that the ENC1-ciliary cell circuit mediates an adaptive behavioral response to hypoxia. Exposure of egg masses to hypoxia elicited a dose-dependent and reversible acceleration of embryonic rotation that mixed capsular fluid, thereby facilitating O(2) diffusion to the embryo. The O(2) partial pressures (Po(2)) for threshold, half-maximal, and maximal rotational response were 60, 28, and 13 mm Hg, respectively. During hypoxia, embryos relocated to the periphery of the egg masses where higher Po(2) levels occurred. Furthermore, intermittent hypoxia treatments induced a sensitization of the rotational response. In isolated ciliary cells, ciliary beating was unaffected by hypoxia, suggesting that in the embryo, O(2) sensing occurs upstream of the motile cilia. The rotational response of embryos to hypoxia was attenuated by application of the serotonin receptor antagonist, mianserin, correlated to the development of ENC1-ciliary cell circuit, and abolished by laser-ablation of ENC1s. Together, these data suggest that ENC1s are unique oxygen sensors that may provide a good single cell model for the examination of mechanistic, developmental, and evolutionary aspects of O(2) sensing.
AuthorsShihuan Kuang, Shandra A Doran, Richard J A Wilson, Greg G Goss, Jeffrey I Goldberg
JournalJournal of neurobiology (J Neurobiol) Vol. 52 Issue 1 Pg. 73-83 (Jul 2002) ISSN: 0022-3034 [Print] United States
PMID12115895 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright 2002 Wiley Periodicals, Inc.
Chemical References
  • Serotonin
  • Nitrogen
  • Oxygen
Topics
  • Animals
  • Behavior, Animal (drug effects, physiology)
  • Cells, Cultured
  • Embryo, Nonmammalian (physiology)
  • Hypoxia (physiopathology)
  • Motor Neurons (physiology)
  • Neurons, Afferent (physiology)
  • Nitrogen (pharmacology)
  • Oxygen (analysis, pharmacology)
  • Serotonin (physiology)
  • Snails (embryology, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: