HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation.

Abstract
Improvement of pulmonary perfusion and blood oxygenation and prevention of acute lung injury (ALI) may rely on ventilation strategy. We hypothesized that application of a combined surfactant, inhaled nitric oxide (iNO), and pressure support ventilation (PSV) should more effectively protect the lungs from injury. Anesthetized and intubated adult rabbits weighing 2.8 +/- 0.3 kg were allowed to breathe room air while receiving oleic acid intravenously (60 microl/kg). Within 90 min this caused a reduction of Pa(O(2)) from 94 +/- 7 to 48 +/- 3 mm Hg and dynamic lung compliance (Cdyn) from 1.59 +/- 0.22 to 0.85 +/- 0.10 ml/cm H(2)O/kg (both p < 0.01), and increase of intrapulmonary shunting (Q S/Q T) from 9.4 +/- 1.2 to 27 +/- 5% (p < 0.05). PSV was subsequently applied with 3 cm H(2)O of continuous positive airway pressure and FI(O(2)) of 0.3, and the animals were randomly allocated to four groups, receiving: (1) PSV only (Control, n = 10); (2) iNO at 20 ppm (NO, n = 9); (3) surfactant phospholipids at 100 mg/kg (Surf, n = 8); and (4) surfactant at 100 mg/kg and iNO at 20 ppm (SNO, n = 8). PSV level was varied to maintain a tidal volume of 8 to 10 ml/kg for another 12 h or until early animal death. Five animals in the SNO, three each in the NO and Surf group, and one in the Control group survived 12 h (SNO versus Control, p < 0.05). The NO, Surf, and SNO groups had significantly improved mean Pa(O(2)) (> 70 mm Hg, p < 0.05), and reduced Q S/Q T (15, 19, and 17%, respectively, p < 0.05) at 6 and 12 h, but not in the Control group. The SNO group had the highest values of Cdyn at 12 h, alveolar aeration and disaturated phosphatidylcholine-to-total protein ratio in bronchoalveolar lavage fluid, and the lowest wet-to-dry lung weight ratio and lung injury score (p < 0.05). The results indicate that early alleviation of ALI by surfactant, iNO, and PSV is due to synergistic effects, and only PSV in this model had limited effects.
AuthorsZ H Zhou, B Sun, K Lin, L W Zhu
JournalAmerican journal of respiratory and critical care medicine (Am J Respir Crit Care Med) Vol. 161 Issue 2 Pt 1 Pg. 581-8 (Feb 2000) ISSN: 1073-449X [Print] United States
PMID10673203 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Pulmonary Surfactants
  • Nitric Oxide
Topics
  • Administration, Inhalation
  • Animals
  • Extravascular Lung Water (drug effects)
  • Lung (pathology)
  • Lung Injury
  • Nitric Oxide (pharmacology)
  • Positive-Pressure Respiration
  • Pulmonary Alveoli (drug effects, pathology)
  • Pulmonary Surfactants (pharmacology)
  • Rabbits
  • Respiratory Distress Syndrome (pathology, prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: