HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies.

Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
AuthorsRyder Davidson, Reese I Krider, Philip Borsellino, Keith Noorda, George Alhwayek, Thomas A Vida
JournalCurrent issues in molecular biology (Curr Issues Mol Biol) Vol. 45 Issue 11 Pg. 8816-8839 (Nov 02 2023) ISSN: 1467-3045 [Electronic] Switzerland
PMID37998730 (Publication Type: Journal Article, Review)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: