HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Screening of Tnfaip1-Interacting Proteins in Zebrafish Embryonic cDNA Libraries Using a Yeast Two-Hybrid System.

Abstract
TNFAIP1 regulates cellular biological functions, including DNA replication, DNA repair, and cell cycle, by binding to target proteins. Identification of Tnfaip1-interacting proteins contributes to the understanding of the molecular regulatory mechanisms of their biological functions. In this study, 48 hpf, 72 hpf, and 96 hpf wild-type zebrafish embryo mRNAs were used to construct yeast cDNA library. The library titer was 1.12 × 107 CFU/mL, the recombination rate was 100%, and the average length of the inserted fragments was greater than 1000 bp. A total of 43 potential interacting proteins of Tnfaip1 were identified using zebrafish Tnfaip1 as a bait protein. Utilizing GO functional annotation and KEGG signaling pathway analysis, we found that these interacting proteins are mainly involved in translation, protein catabolic process, ribosome assembly, cytoskeleton formation, amino acid metabolism, and PPAR signaling pathway. Further yeast spotting analyses identified four interacting proteins of Tnfaip1, namely, Ubxn7, Tubb4b, Rpl10, and Ybx1. The Tnfaip1-interacting proteins, screened from zebrafish embryo cDNA in this study, increased our understanding of the network of Tnfaip1-interacting proteins during the earliest embryo development and provided a molecular foundation for the future exploration of tnfaip1's biological functions.
AuthorsShulan Huang, Hongning Zhang, Wen Chen, Jiawei Wang, Zhen Wu, Meiqi He, Jian Zhang, Xiang Hu, Shuanglin Xiang
JournalCurrent issues in molecular biology (Curr Issues Mol Biol) Vol. 45 Issue 10 Pg. 8215-8226 (Oct 10 2023) ISSN: 1467-3045 [Electronic] Switzerland
PMID37886961 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: