HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nitriding Effect on the Tribological Performance of CrN-, AlTiN-, and CrN/AlTiN-Coated DIN 1.2367 Hot Work Tool Steel.

Abstract
In this study, heat-treated and multisurface engineered DIN 1.2367 tool steel was subjected to room and elevated temperature wear tests, and the effect of nitriding on its tribological behavior was investigated. CrN, AlTiN, and CrN/AlTiN coatings with a total thickness of 2 µm were obtained by arc cathodic physical vapor deposition on conventional heat-treated and gas-nitrided steels. The white layer formed during nitriding was removed, and a diffusion layer (100 µm) was achieved in the cross section of the steel having a tempered martensitic matrix. The highest surface hardness was attained with an integral coating (CrN/AlTiN), and surface hardness increased even more after nitriding due to the formation of a multicomponent ceramic layer on top of the diffusion layer. The room temperature wear tests performed against an alumina counterpart revealed that (i) CrN/AlTiN-coated steel had the highest friction coefficient of 0.26, which further increased to 0.33 by nitriding due to the increase in shear strength, and that (ii) with increasing surface hardness, the specific wear rates (W) of the heat-treated and coated steels could be ranked as follows: WCrN/AlTiN < WAlTiN < WCrN. The wear rates decreased when nitriding was carried out prior to coating. In order to simulate the aluminum extrusion conditions, hot wear behavior of the surfaces against AA6080 alloy at 450 °C was investigated. The hot wear tests revealed that (i) high friction coefficients were reached due to the adhesive characteristic of aluminum to the surfaces, (ii) the nitrided and CrN/AlTiN-coated sample exhibited the lowest wear rate among all studied surfaces, and (iii) the film damage on the worn surfaces mostly occurred in the form of droplet delamination.
AuthorsGülşah Aktaş Çelik, Şaban Hakan Atapek, Şeyda Polat, Aleksei Obrosov, Sabine Weiß
JournalMaterials (Basel, Switzerland) (Materials (Basel)) Vol. 16 Issue 7 (Mar 31 2023) ISSN: 1996-1944 [Print] Switzerland
PMID37049099 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: