HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered vascular networks.

Abstract
With new daily discoveries about the long-term impacts of COVID-19, there is a clear need to develop in vitro models that can be used to better understand the pathogenicity and impact of COVID-19. Here, we demonstrate the utility of developing a model of endothelial dysfunction that utilizes human induced pluripotent stem cell-derived endothelial progenitors encapsulated in collagen hydrogels to study the effects of COVID-19 on the endothelium. These cells form capillary-like vasculature within 1 week after encapsulation and treating these cell-laden hydrogels with SARS-CoV-2 spike protein resulted in a significant decrease in the number of vessel-forming cells as well as vessel network connectivity quantified by our computational pipeline. This vascular dysfunction is a unique phenomenon observed upon treatment with SARS-CoV-2 SP and is not seen upon treatment with other coronaviruses, indicating that these effects were specific to SARS-CoV-2. We show that this vascular dysfunction is caused by an increase in inflammatory cytokines, associated with the COVID-19 cytokine storm, released from SARS-CoV-2 spike protein treated endothelial cells. Following treatment with the corticosteroid dexamethasone, we were able to prevent SARS-CoV-2 spike protein-induced endothelial dysfunction. Our results highlight the importance of understanding the interactions between SARS-CoV-2 spike protein and the endothelium and show that even in the absence of immune cells, the proposed 3D in vitro model for angiogenesis can reproduce COVID-19-induced endothelial dysfunction seen in clinical settings. This model represents a significant step in creating physiologically relevant disease models to further study the impact of long COVID and potentially identify mitigating therapeutics.
AuthorsBrett Stern, Peter Monteleone, Janet Zoldan
JournalJournal of biomedical materials research. Part A (J Biomed Mater Res A) (Apr 08 2023) ISSN: 1552-4965 [Electronic] United States
PMID37029655 (Publication Type: Journal Article)
Copyright© 2023 Wiley Periodicals LLC.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: