HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High Quality Coal Foreign Object Image Generation Method Based on StyleGAN-DSAD.

Abstract
Research on coal foreign object detection based on deep learning is of great significance to safe, efficient, and green production of coal mines. However, the foreign object image dataset is scarce due to collection conditions, which brings an enormous challenge to coal foreign object detection. To achieve augmentation of foreign object datasets, a high-quality coal foreign object image generation method based on improved StyleGAN is proposed. Firstly, the dual self-attention module is introduced into the generator to strengthen the long-distance dependence of features between spatial and channel, refine the details of the generated images, accurately distinguish the front background information, and improve the quality of the generated images. Secondly, the depthwise separable convolution is introduced into the discriminator to solve the problem of low efficiency caused by the large number of parameters of multi-stage convolutional networks, to realize the lightweight model, and to accelerate the training speed. Experimental results show that the improved model has significant advantages over several classical GANS and original StyleGAN in terms of quality and diversity of the generated images, with an average improvement of 2.52 in IS and a decrease of 5.80 in FID for each category. As for the model complexity, the parameters and training time of the improved model are reduced to 44.6% and 58.8% of the original model without affecting the generated images quality. Finally, the results of applying different data augmentation methods to the foreign object detection task show that our image generation method is more effective than the traditional methods, and that, under the optimal conditions, it improves APbox by 5.8% and APmask by 4.5%.
AuthorsXiangang Cao, Hengyang Wei, Peng Wang, Chiyu Zhang, Shikai Huang, Hu Li
JournalSensors (Basel, Switzerland) (Sensors (Basel)) Vol. 23 Issue 1 (Dec 29 2022) ISSN: 1424-8220 [Electronic] Switzerland
PMID36616972 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: