HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pharmacological Basis for Abrogating Myocardial Reperfusion Injury Through a Multi-Target Combined Antioxidant Therapy.

Abstract
The main goal of the treatment for acute myocardial infarction is to achieve reperfusion of the affected myocardial tissue, with percutaneous coronary angioplasty being the gold standard procedure. However, this strategy has been associated with additional heart damage termed "lethal reperfusion injury," which is responsible for up to half of the final infarct size. Among the possible underlying mechanisms that are likely to explain this damage, studies suggest that oxidative stress plays a key role. Although this has not been translated into clinical benefits in most studies, recent preclinical studies reported promising results and a possible synergy with the combined use of vitamin C (VC), N-acetylcysteine (NAC), and deferoxamine (DFO). However, to implement a combined therapy with these drugs for patients requires further studies to understand their pharmacokinetic properties. Available data of the clinical trials have not been validated by looking into the pharmacokinetics in their design. Therefore, this article presents an update and comparison of the evidence for the efficacy of these administration schemes for each drug in cardioprotection, their pharmacokinetic properties and mechanisms of action for their use against "lethal reperfusion injury." To achieve a cardioprotective effect using a new pharmacological strategy before the onset of reperfusion, it is helpful to consider the pharmacokinetics of each drug. In this regard, to design a fast and short pharmacologic therapeutic strategy, theoretically VC and DFO concentrations could be modeled by a one-compartment model whereas NAC could be modeled by a three-compartment model with an initial short half-life.
AuthorsDaniel San-Martín-Martínez, Dayanara Serrano-Lemus, Vicente Cornejo, Abraham I J Gajardo, Ramón Rodrigo
JournalClinical pharmacokinetics (Clin Pharmacokinet) Vol. 61 Issue 9 Pg. 1203-1218 (09 2022) ISSN: 1179-1926 [Electronic] Switzerland
PMID35871676 (Publication Type: Journal Article, Review, Research Support, Non-U.S. Gov't)
Copyright© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Chemical References
  • Antioxidants
Topics
  • Antioxidants (pharmacology, therapeutic use)
  • Humans
  • Myocardial Infarction (drug therapy)
  • Myocardial Reperfusion Injury (drug therapy, prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: