HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Network Pharmacology and Molecular Docking-Based Analysis on Bioactive Anticoronary Heart Disease Compounds in Trichosanthes kirilowii Maxim and Bulbus allii Macrostemi.

Abstract
Trichosanthes kirilowii Maxim. and Bulbus allii Macrostemi are the components of Gualou Xiebai decoction (GLXB), a commonly used herbal combination for the treatment of coronary heart disease (CHD) in traditional Chinese medicine. Although GLXB is associated with a good clinical effect, its active compounds and mechanism of action remain unclear, which limits its clinical application and the development of novel drugs. In this study, we explored key compounds, targets, and mechanisms of action for GLXB in the treatment of CHD using the network pharmacology approach. We identified 18 compounds and 21 action targets via database screening. Enrichment analysis indicated that the effects of GLXB in patients with CHD are primarily associated with the regulation of signalling pathways for tumour necrosis factor, nuclear factor-kappa B, hypoxia-inducible factor-1, arachidonic acid metabolism, and insulin resistance. GLXB thus exerts anti-inflammatory, antihypoxic, and antiagglutinating effects; regulates lipid metabolism; and combats insulin resistance in CHD via these pathways, respectively. After reverse targeting, we observed that the main active compounds of GLXB in the treatment of CHD were quercetin, naringenin, β-sitosterol, ethyl linolenate, ethyl linoleate, and prostaglandin B1. To explore the potential of these compounds in the treatment of CHD, we verified the affinity of the compounds and targets via molecular docking analysis. Our study provides a bridge for the transformation of natural herbs and molecular compounds into novel drug therapies for CHD.
AuthorsYi-Ding Yu, Wang-Jun Hou, Juan Zhang, Yi-Tao Xue, Yan Li
JournalEvidence-based complementary and alternative medicine : eCAM (Evid Based Complement Alternat Med) Vol. 2021 Pg. 6704798 ( 2021) ISSN: 1741-427X [Print] United States
PMID34824593 (Publication Type: Journal Article)
CopyrightCopyright © 2021 Yi-Ding Yu et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: