HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Design of enzyme-responsive short-chain fatty acid-based self-assembling drug for alleviation of type 2 diabetes mellitus.

Abstract
Short-chain fatty acids (SCFAs), such as propionic and butyric acids have been touted as potential therapeutic interventions that can ameliorate diabetic pathogenesis. However, SCFAs are low-molecular-weight (LMW) compounds that have limited clinical use due to unfavorable pharmacokinetics, off-target effects, poor palatability and unpleasant odor. Hence, to improve the therapeutic utilization of SCFAs, the enzyme metabolizable block copolymers, [poly(ethylene glycol)-b-poly(vinyl ester)s], possessing propionate and butyrate esters were synthesized, which formed stable nanoparticles by self-assembling under physiological conditions. In this study, the therapeutic efficacy of propionic acid- and butyric acid-based self-assembling nanoparticles (PNP/BNP) was evaluated in a mouse model of type 2 diabetes mellitus through ad libitum drinking. The conventional antidiabetic drug, exenatide- and BNP-treated mice showed the highest glucose tolerance, whereas LMW SCFAs remained ineffective in normalizing glucose homeostasis. The better efficacy of BNP over the LMW SCFAs was attributable to (i) higher consumption of BNP than the LMW SCFAs by the mice (good palatability and odorless), (ii) prolonged residence time of BNP (48 h) in the gastro-intestinal tract (muco-adhesion) contributing to intestinal enzyme-mediated sustained release of butyric acid, and (iii) negligible off-target effects (no abrupt rise in the bloodstream). The aforementioned data suggest that SCFA-based nanoparticles are more potential therapeutic interventions than LMW SCFAs for metabolic diseases such as diabetes.
AuthorsBabita Shashni, Yuya Tajika, Yukio Nagasaki
JournalBiomaterials (Biomaterials) Vol. 275 Pg. 120877 (08 2021) ISSN: 1878-5905 [Electronic] Netherlands
PMID34062420 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2021 Elsevier Ltd. All rights reserved.
Chemical References
  • Fatty Acids, Volatile
  • Pharmaceutical Preparations
Topics
  • Animals
  • Diabetes Mellitus, Type 2 (drug therapy)
  • Disease Models, Animal
  • Fatty Acids, Volatile
  • Mice
  • Pharmaceutical Preparations

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: